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Off-plane scattering of time-harmonic plane waves by a plane diffraction grating with arbitrary conductivity
and general surface profile is considered in a rigorous electromagnetic formulation. Integral equations for coni-
cal diffraction are obtained involving, besides the boundary integrals of the single and double layer potentials,
singular integrals, the tangential derivative of single-layer potentials. We derive an explicit formula for the
calculation of the absorption in conical diffraction. Some rules that are expedient for the numerical implemen-
tation of the theory are presented. The efficiencies and polarization angles compared with those obtained by
Lifeng Li for transmission and reflection gratings are in a good agreement. The code developed and tested is
found to be accurate and efficient for solving off-plane diffraction problems including high-conductive gratings,
surfaces with edges, real profiles, and gratings working at short wavelengths. © 2010 Optical Society of
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1. INTRODUCTION

Today a lot of optical applications of conical diffraction (off
plane—see Fig. 1) by gratings are well known: in particu-
lar, gratings working in the x-ray and extreme ultraviolet
ranges at grazing angles; shallow and deep high-
conductive, anomalously absorbing gratings illuminated
at near-normal and grazing incidence; high-spatial-
frequency, deep transmission gratings having high antire-
flection and polarization conversion properties; and gen-
eralized spectroscopic ellipsometry and scatterometry
techniques. For the numerical simulation of conical dif-
fraction by optical gratings of arbitrary groove profiles
and conductivity several rigorous methods have been pro-
posed. Among them we know differential [1,2], coordinate
transformation [3—6], modal [7], fictitious sources [8,9],
and finite element [10,11] methods. In [12] T-matrix and
integral equation methods (IMs) were described for off-
plane transmission and low-conducting sine-profiled grat-
ings.

For the classical (in-plane) diffraction problems bound-
ary IMs have been established as an efficient and accu-
rate numerical tool. The methods are used successfully to
tackle high-conductive deep-groove gratings in the TM po-
larization, profile curves with corners, echelles, gratings
with thin coated layers, randomly rough mirrors and
gratings, and diffraction problems at very small
wavelength-to-period ratios [13—22]. Many different inte-
gral formulations have been proposed and implemented;
see, e.g., [22-30]. The aim of this paper is to study an in-
tegral method for conical diffraction on the simplest
model, the diffraction of a time-harmonic plane wave by
one surface, which in Cartesian coordinates (x,y,z) is pe-
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riodic in the x- and invariant in the z-direction and sepa-
rates two different materials. Special attention is paid to
the main aspects of the IM for arbitrarily polarized plane
waves and surface gratings having any outline and con-
ductivity.

The electromagnetic formulation of the diffraction by
general gratings, which are modeled as infinite periodic
structures, can be reduced to a system of Helmholtz equa-
tions for the z components of the electric and magnetic
fields in R2, where the solutions have to be quasiperiodic
in one variable, to be subject to radiation conditions with
respect to the other, and to satisfy certain jump conditions
at the interfaces between different materials of the dif-
fraction grating. In the case of classical diffraction, when
the incident wave vector is orthogonal to the z direction,
the system splits into independent problems for the two
basic polarizations of the incident wave, whereas for the
case of conical diffraction the boundary values of the z
components as well as their normal and tangential de-
rivatives at the interfaces are coupled. Thus the un-
knowns are scalar functions in the case of classical dif-
fraction, and they are two-component vector functions in
the conical case.

In the considered case of one interface we reduce the
system of Helmholtz equations to a 2X 2 system of inte-
gral equations, which contain, besides the boundary inte-
grals of the single- and double-layer potentials, addition-
ally the tangential derivative of single-layer potentials,
which are singular integrals. The corresponding theory is
described in Section 2. The diffraction problem and
boundary relations between values of the fields across the
boundary are formulated in explicit form in Subsection
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Fig. 1. (Color online) Schematic conical diffraction by a grating.

2.A. The respective integral equations in terms of bound-
ary potentials with detailed discussions, formulas, and
jump relations can be found in Subsection 2.B. A more
general treatment of the energy conservation law appli-
cable to off-plane absorption gratings is considered in
Subsection 2.C. The numerical implementation approach
expedient for the calculation of far fields and polarization
properties of conical diffraction by gratings is described
briefly in Section 3. Diverse numerical tests devoted to
comparing, convergence, accuracy, computation time, and
obtaining results for an important case are given in Sec-
tion 4. In Subsection 4.A we compare some of our results
with data obtained by other well-established conical ap-
proaches for different groove profile and conductivity
gratings. Some information about convergence, accuracy,
and complexity of the presented method is included in
Subsection 4.B. Finally, in Subsection 4.C a numerical ex-
periment for the off-plane grazing-incident real-groove-
profile grating working in the soft-x-ray range is demon-
strated as an illustration of possibilities of the software
developed.

2. THEORY

A. Diffraction Problem

We denote by e,, e,, and e, the unit vectors of the axis of
the Cartesian coordinates. The grating is a cylindrical
surface whose generatrices are parallel to the z axis (see
Fig. 1) and whose cross section is described by the curve X
(Fig. 2). We suppose that ¥ is not self-intersecting and d
periodic in the x direction. The grating surface is the
boundary between two regions G,XRCIR®, which are
filled with materials of constant electric permittivity e,
and magnetic permeability u,.

0 d x

Fig. 2. Schematic diffraction by a simple grating in cross

section.
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We deal only with time-harmonic fields; consequently,
the electric and magnetic fields are represented by the
complex vectors E and H, with a time dependence
exp(—iwt) taken into account. The wave vector k, of the
incident wave in G, X R, where €, ,u, >0, is in general not
perpendicular to the grooves (k,-e,#0). Setting k,=(«,
-B,7), the surface is illuminated by a electromagnetic
plane wave

Ei= pei(ax—ﬁyWZ)’ H = sel(@-Pr+»)
which due to the periodicity of 3, is scattered into a finite
number of plane waves in G, X R and possibly in G_XR.
The wave vectors of these outgoing modes lie on the sur-
face of a cone whose axis is parallel to the z axis. There-
fore one speaks of conical diffraction.

The components of k, satisfy

B>0, +p+y=o’epn,,

and they are expressed by using the incidence angles
|61, || <7/ 2:

(a,— B,7y) = wy €, p,(sin O cos ¢,— cos O cos ¢,sin ¢).

Classical diffraction corresponds to k,-e,=0, whereas ¢
# 0 characterizes conical diffraction.

Since the geometry is invariant with respect to any
translation parallel to the z axis, we make the ansatz for
the total field

(E,H)(x,y,2) = (E,H)(x,y)e'”, 1)

with E,H:R2—(3. This transforms the time-harmonic
Maxwell equations in R3,

VXE=iouH, V XH=-iweE, (2)

with piecewise constant functions e(x,y)=e€,, u(x,y)=u.
for (x,y) e G, into a two-dimensional problem. This was
described in [9] and analytically justified in [31]. Intro-
ducing the transverse components

ETzE_Ezez, HTzH_Hzezr
representation (1) and Egs. (2) lead to
(*eu—V)Ep=iyVE, +iouV X (H.e,),

(weu—V)Hp=iyVH,-iweV X (E,e,). 3)

Noting that y=w(e,u,)?sin ¢, we introduce the piece-
wise constant function

)1/2= K, (X,y) € G+’

_ in2
K(x,y)={(€+ﬂ+ €. p, SIN° ¢ @

(e_p_— €.ty sin” ¢)1/2 =x_ (xy) e G,

with the square root zY2=r12 exp(ip/2) for z=r exp(ip),
0<¢p<2m. Hence Eqgs. (3) show that under the condition
«# 0, which will be assumed throughout, the components
E,,H, determine the electromagnetic field (E,H).

Additionally, Maxwell’s equations (2) imply that E, ,H,
satisfy the Helmholtz equations

A+ ?KPE, = (A+ ?>k*)H, =0 (5)

in G,. The continuity of the tangential components of E
and H on the surface takes the form
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[(n,0) X Elsxr =[(n,0) X H]s,z =0,

where (n,0)=(n,,n,,0) is the normal vector on X R and
[(n,0) X E]s xr denotes the jump of the function (n,0) XE
across the surface. This leads to the jump conditions for
E,,H, across the interface X of the form

[Ez]E = [Hz]E = O’
y we Y wp
——0H, + —<—=d,E, | =| 5=dE,- ——d,H,| =0.
22T 2,20 22T 2,20
3 3
Here d,=n,d,+n,d, and d,=-n,d,+n,d, are the normal
and tangential derivatives on 3, respectively. We intro-

duce B,=(u,/€,)Y2H, and use y=w(e,u,)"?sin ¢ to re-
write the jump conditions in the form

[E.]s=[H,]s=0,

€l E, ) B,
= 2=—€+smq§ 2 Z,

= M, SIn .
K2 3 « 3

The z components of the incoming field

Eix,y)=p.e' ™, Bixy)=q.e' "

with g, = (u./e) s, (M)

are a quasiperiodic in x of period d, i.e., satisfy the rela-
tion

ida

u(x +d,y) =e"*“u(x,y).

In view of the periodicity of € and u, this motivates us to
seek a-quasiperiodic solutions E,,B,. Furthermore, the
diffracted fields must remain bounded at infinity, which
implies the well-known outgoing wave conditions

(E.,B.)(x,y) = (E.,B}) + >, (E!,B})el®*Fy)  y=H,
neZ
(E.,B,)(x,y) = >, (E,,Byel@*Fy)  y<_H, (8)

nel’
with the unknown Rayleigh coefficients E;;,H, € C, where
3 C{(x,y):ly|<H}, and a,, B; are given by

Ny B ar
with 0 <arg B < 7.

In the following it is always assumed that

O<arge, argu_.<m

with arg(e_u_) <2, (9)

which holds for all existing optical (meta)materials. Then
0<arg «*<2m and g, are properly defined for all n.
With the z components of the total fields denoted
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Ezz{u++E'i , Bzz{v++Bi in G,,

u v inG_,

the problem of Eqgs. (5), (6), and (8) can be written as

Au, + 0*Cu, =Av, + 0*k*v,=0 inG,, (10)

edu.  €d,(u, +E)

_ i
u_=u,+E,

2 2
1 1
=€, sin ¢p| 5 - — |du_ on 3,
Ky K-
o p_dus iy (vy + By)
v_=v,+B., T - 3
K K

- +

1 1
=- u, sin ¢(—2——2>(9tu_ on 3, (11)
K.

+ -

%

(w0) () = > (BB +F)  fory=H,
(u_,v)(x,y)= E (E;,B,:)ei(“nx' ) fory<-H.

n=-x

(12)

B. Integral Equations

There exist different ways to transform the problem of
Egs. (10)—(12) to integral equations. We combine here the
direct and indirect approaches as proposed in [23,24] for
the case of classical diffraction. Let %, be given by a piece-
wise C? parameterization

a(t) = (X(@),Y(®),
Xt+1)=X(¢) +d,

Yt+1)=Y(), tekR; (13)

i.e., the continuous functions X,Y are piecewise C? and
o(ty) # o(ty) if t1 # ty. If the profile 3 has corners, then we
suppose additionally that the angles between adjacent
tangents at the corners are strictly between 0 and 2.

The potentials that provide a-quasiperiodic solutions of
the Helmholtz equation

Au+ku=0  withO0<argk?<2w (14)

are based on the quasiperiodic fundamental solution of

period d,
N pia,X+iB,[Y]

i
U, oP) = lim — > ————,

P=(X,Y).
N—o» dn:—N ﬂn

Here we assume that B8,=(k?—a?)V2#0 for all n. The
single- and double-layer potentials are defined by

Se(P) = 2J @)V}, (P - Q)doyg,
r
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Do(P) =2 f o(@) @ Vi, oP - R)dog,  (15)
r

where T" is one period of the interface 3, i.e. I'={co(¢):¢
e [tg,to+ 1]} for some ¢,. In Eqgs. (15) dog denotes integra-
tion with respect to the arc length and n(®) is the normal
to ¥ at Qe pointing into G_. Obviously, for
a-quasiperiodic densities ¢ on 3 the potentials S¢, Do are
a quasiperiodic in X and do not depend on the choice of T
The potentials provide the usual representation formu-
las. Any a-quasiperiodic function u that satisfies in G, the
Helmholtz equation (14) and the radiation condition

©

wy)= 2 e,y =H,
admits the representation
1 u in G,
- -Du) = 1
Z(Sr?nu u) 0 inG (16)

where the normal n points into G_. Under the same as-
sumptions for a function u in G_ the representation

1 0 in G,
E(D—S&nu)= — 17)

is valid.

Restriction of the potentials S and D to the profile curve
3, are the so-called boundary integral operators. The po-
tentials provide the usual jump relations of classical po-
tential theory. The single-layer potential is continuous
across X

(S@)*(P) = (Se)"(P)=Ve(P),

where the upper signs + and — denote the limits of the
potentials for points in G, tending in nontangential direc-
tion to P € 3, and V is a integral operator with logarithmic
singularity

Ve(P) =2 f YV oP-Q)e(@)dog,  PeX.
r

The double-layer potential has a jump if crossing I':
DPe)*=(K-De¢, (Do) =(K+De (18)

with the boundary double-layer potential

Ko(P)=2 f @@ V,oP — Q)dog + (8(P) - 1) o(P).
r

Here 8(P) € (0,2), P e, denotes the ratio of the angle in
G, at P and 7, i.e., 8(P)=1 outside corner points of X. The
normal derivative of S¢ at 3 exists outside corners and
has the limits

(0, Se)*=(L+De,  (3,S¢)"=(L-De, (19)

where L is the integral operator on I' with the kernel
) Vr,oP-Q),
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Le(P) =2f P(@)p)VioP-Q)dag, PeX.
r

In the following the tangential derivative of single-layer
potentials

5 (Ve)(P) = 2(9tf VY, oP-Q@)e(@)dog, PeX,

r

also occurs. Interchanging differentiation and integration
leads to an integral kernel with the nonintegrable main
singularity

t(P)-(P-Q)
P-QF -

where ¢(P) denotes the tangential vector to X at P. There-
fore the tangential derivative of single-layer potentials
cannot be expressed as a usual integral. But it can be in-
terpreted as a Cauchy principal value or singular integral

Jo(P)=21lim f o(@)dypy W}, o P - Q)d g = 9,(Ve)(P),
=0 Jr\rp,s)

(20)

where I'(P, §) is the subarc of I of length 26 with the mid-
point P. Similarly, one can define the singular integral

He(P)=2lim f ©(Q) )V, olP - Q)dog, (21)
=0 Jr\rp,s)

which by using integration by parts gives for
a-quasiperiodic ¢

Ho(P)=- 2f Vi olP - Q)9,0(Q)dog=-V(4,e)(P), P eX.
r

Note that V9,V=VJ=-HV.

Now we are in the position to formulate the integral
equations for solving the conical diffraction problem
(10)—(12). In order to represent u, and v, as layer poten-
tials we assume in what follows that the parameters are
such that gf=(w?k?-a2)V2#0 for all n. Since arg«_
e [0, m) [see assumption (9)] the boundary integral opera-
tors corresponding to the fundamental solution ¥ are
well defined, and by Eqs. (16) and (17)

WK, ,a
1
u,= §($+(9nu+ -D*u,),
1
v, = §(S+&nv+—D+v+) in G,,
1 ) )
Bi= - (D'BL- §%,5),
1 ) .
B.=—(D*B.-S%9,B.) in G_.
2

Here we denote by S* the single-layer potential defined on
I with the fundamental solution ¥, ,. Correspondingly
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D* is the double-layer potential over I' with the normal
derivative of ¥, , as kernel function. Taking the limits
on ¥, the jump relations (18) lead to

V*9,(u, +E) - I+ K*)(u, +E.) = 2El5,

V*6,(v, +B') - (I+K*)(v, + B)) = 2B's, (22)

where V* denote the boundary single-layer potentials

Vi(p(P) = Zf ()D(Q)\I,wki,a(P_ Q)dO-Q’ Pe 29

r

and the operators K* and L* are defined analogously. The
solutions in G_ are sought as single-layer potentials

u_=Sw, v.=8TrT1
with certain auxiliary densities w, 7. Since by Egs. (19)

uly=Vw, dyu_ls =L~ -Dw,

U_|2=V_’T, (7,1U_|2=(L_—I)7',

we see from Eqs. (22) that jump conditions (11) are valid
when the unknowns w, 7 satisfy the system of integral
equations

2

_K,

2
€.k

K2

VHL~ - Dw - (I + K*)V-w - sin ¢< 1- —2) Vo, V-r

K

=2E!,

2
MoKy

2
MK

=2B. (23)

2
K
VHL- = D)r— (I + K*)V-7+sin ¢( 1- —;)V*ﬁtV‘w
K_

Recall that we assume «”#0 and w?«%— a2 # 0 for all n.
For the analytical and numerical treatment of Egs. (23)
it is advantageous to use the relations

ViV =-HV =V

[see definitions (20) and (21)]. Then Egs. (23) become a
system of singular integral equations, for which powerful
analytical and numerical methods exist.

If the solution of system (23) is found, then the solution
of the conical diffraction problem Egs. (10)—(12), can be
determined by the relations

1 E_KE
U, =- 2 ST -L)w+ D'V w

€K

+ 5 _=Sw,
K

sin ¢(x” - k%)
—SJ 7, u

1 /.L_K?r
v,=—— >STU-L7)7+D*V°r
2\ porl

sin ¢>(K% - KE)
-——SJw|, v_=8rT.

K
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A detailed mathematical analysis of system (23) is
given in [32]. In particular, the following properties have
been established:

1. The integral equations are equivalent to the Helm-
holtz system if the operators V* and V™ are invertible.

2. If the profile ¥ has no corners, then Eqgs. (23) are
solvable if e_+e,#0 and pu_+pu, #0.

3. If the profile X has corners, then Egs. (23) are solv-
ableife_/e, and u_/u, ¢ [-p,-1/p] for some p>1, depend-
ing on the angles at these corners.

4. The solution of Egs. (23) is unique if Im e_.=0 and
Im p_=0 with Im(e_+pu_)>0.

C. Energy Balance for Conical Diffraction

Suppose that E,,B, are a solution of the partial differen-
tial formulation of conical diffraction, Egs. (5), (6), and (8).
The expression of the conservation of energy can be de-
rived from a variational equality for £, and B, in a peri-
odic cell Qf, which has in the x direction the width d, is
bounded by the straight lines {y = + H}, and contains I". We
multiply Eq. (5) by

€ __ ) L —
2E27 Bz

€,K oK

and apply Green’s formula in the subdomains QzNG..
Then, by using the quasiperiodicity of E,,B, and jump re-
lations (6), one derives

el 1l 1 1 _
f — —Z‘VEZ|2 - CU2|EZ|2 + sin (]5 5~ 3 f athEz
QO €\ K Ky K T

H
1 [ —
9 LE.E, - _gf ,E.E,=0, (24)
K I €k riem
nil S, ) 1 1 —
- F|VBZ| - w |Bz| —sin ¢ ) athBz
ay M+ Ky K-JJr
1 I —
- BB, - — d,B,B,=0, (25)
K Jran N2

where I'(xH) denotes the upper and the lower straight
boundary of Qy, respectively, and the normal n on I'(xH)
is directed outward. The outgoing wave conditions (8) im-

ply
f 0,E.E, =iB(E; - p.I? + 2i Im(E{p,e’?))
T'(H)

+ iE ,8;;|E:;\Ze"2H Im 5;,
n#0

f E.E. =i 2, B|E,Pe > ™ P,
I'(-H)

nel’

and similar expressions for the boundary integrals involv-
ing B,.

Note that €, and u, are positive, and let e_ and u_ be
real. Taking the imaginary part of Eqgs. (24) and (25), one
gets
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B 1 € o
_2|p2|2_ ) 2 :B;|E2|2_ 2 2 Bn|En|2
K +B7>0 +K- g0

1 1 —

=-sin¢| 5 -— Imf 4,B,E,,

K, K- r
B 1 Ko o
_2‘q2|2_ ) E B;'B;F_ 2 E ﬂn'Bn‘2
K +B5>0 +K= =0

1 1 —
=sin¢| 5 -— |Im | 4E.B.,
K, K- r

which in view of
Im f 9,B,E, =Im f 9,E,B,
r r

lead to

+

By
PP +lg.f= X —(E;[*+|B;P")

Bi>0

2 —
K B[ € Mo

D —(—|E;|2+—|B;|2).
K B My

>0 +

Thus, for lossless gratings, the energy of the incident
wave |p,|®+]|q,/|? equals the sum of reflection order efficien-
cies

B
R= 2 —(E;[+IB;P)

By>0

plus the sum of transmission order efficiencies

€_ —
T=2 @<—IE;IZ+ “—IB;P).
g0 B\e jIn

If Im e #0 or Im u_+#0, then T=0 and in general |p,|?
+|q./>>R. The remaining part of the energy is absorbed
in the substrate. Therefore, one tool to check the quality
of the numerical solution for absorbing gratings is the re-
quirement that the sum of the reflected energy and the
absorption energy should be equal to the energy of the in-
cident wave.

To obtain an expression for the absorption energy we
apply Green’s formula to E, and B, in the domain

QN G_, which gives, since the normal n on I' is interior
for QgNG_,

e[ 1 s oo € —
- _2|VE2| - |Ez| - 9 anEzEz
aunG_ €+ \ K- €K Jrim

€_ J—
== 9 anEzEz ’

€,K
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uof1 y —
f _(_2|VB2|2 - w2|Bz|2> - zf anBsz
aynG_ M+ \ K- MK J p_y

M —
=- 5 | 9.B.B..
MeK_J

Hence, the imaginary parts of Eqs. (24) and (25) become

€_ _ 1 1 —
Im — | §,E.E,-sin¢pIm| - -— ;B.E,
ex” ) Ky K2)Jp

B +|2 2 B; +|2
+E(|Eo| -p.P+ X SIE;=0,
"

Bi>0 Ky

" _ 1 1 _
Im Zf ,B.B, +sin ¢ Im| — - — fﬁthBz
MK Ky K- )Jr
B B
¢ SBP-la.P)+ S SIBiF =0,
"

B;>0 Ky

resulting in

E_K2

5 .
g = S B+ B + T f #E.E.
Br>0 € By

,u_Kf __ sing
+Im ——— | 9,B.B,-
r

My K> B B

K2 _ _
x| Im|1-— f (3:B.E, - 3,E,B.)
K-JJr

B, < € _
= E _(‘Emz + |B;|2) +—Im _ganEzEz
B,>0 A T G

M —
+—3,B.B,
M kZ

2i’sing 1 _
+———1Im —Re j E.iB,.
B r

K

Thus we derive the conservation of energy for absorbing
gratings

Ipz|2 + |qz‘2 =R+A

with the absorption energy of conical diffraction
Kz 1/e e —
A=—Im|—|—| 4,EE.+— | 9,B.B,

B K_\ €& Jrp My Jp

EﬁE)) .
Tr

+2sin¢Ref
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In the case ¢=0 this formula provides the expression of
the heat absorption energy for in-plane diffraction de-
rived in [21]. In terms of the solution w, 7 of integral equa-
tions (23) the absorption energy is given by the formula

2

K 1 €_ e _
=—Im(—2f <—(L_—I)LUV_LU+—(L_—I)TV_T>>
B r

K € Moy

2i%sing 1 _
+———Im — Re f Vwd . (26)
B r

3. NUMERICAL IMPLEMENTATION

We discuss briefly the numerical solution of system (23).
Let I' be parameterized by Eqs. (13). In the case of a
smooth profile 3 a trigonometric collocation method is
used; i.e., we approximate

N
w(o(8)e X0 |0’ (#)| ~ wy(t) = 2 aye
k=-N

N
Ho(t)e X0 g (t)| = my(t) = D, bye®™*,  (27)
k=-N

and the coefficients {a;},{b;} are such that system (23) is
satisfied at the 2N +1 collocation points t,=k/(2N+1), k
=0,...,2N.

Similar to [24], the advantage of trigonometric methods
is utilized in order that the integral operators V*, H*, and
J~ with singular kernels can be approximated properly.
For example, using the parameterization o(¢) the single-
layer potential operator of w can be approximated by

1
Viw(o(t)) = - 2ei“X(t)<f log|2 sin 7(t - s)|wy(s)ds
0

1
+ J gt(t,S)wN(S)dS>

0

and the singular integral J*w by

1
Jrw(o(t)) = ei“X(t)(f cot 7(t — s)wy(s)ds
0

1
+ f ji(t,S)wN(S)dS) ,

0

where the functions g*(¢,s), j*(¢,s) are continuous and pe-
riodic in ¢ and s. The action of the integral operators with
the kernels log|2 sin 7(t-s)| and cot 7(t-s) on trigonomet-
ric polynomials is given analytically. All other integrals
have continuous kernels, and they are approximated by
the trapezoidal rule as in Nystrom’s method. So the dis-
cretization error depends only on the error made in com-
puting the functions g*(¢,s), j*(¢,s) and the continuous
kernels of K™ and L, i.e., in computing the fundamental
solution and their derivatives. Here we use the exact
Ewald method (see [22]) with a number of summation
terms to ensure discretization errors of order N-3. Finally
the operator products V*L~, K*V-, H*V~, or V*J~ are ap-
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proximated by the products of the corresponding discreti-
zation matrices. Note that instead of H*V~ or V*J~ one
can also perform the discretization of V*9,V-, involving a
numerical differentiation. Numerical tests and further in-
vestigations can show which one is preferable for given ef-
ficiency calculations.

For the solution of the discrete system we use a precon-
ditioned generalized minimal residual method similar to
that described in [22]. The number of iterations until a
prescribed residual error is reached depends, of course, on
the refraction indices and the profile, but it is nearly in-
dependent of the number of unknowns. However, it
should be noted that modern implementations of the
LAPACK and BLAS software packages on multiprocessor
machines make direct solving a competitive alternative to
iterative solution methods even for rather large systems.

If the profile curve has corners, then the convergence
properties of methods with only trigonometric trial func-
tions deteriorate owing to singularities of the densities w
and 7 of the form O(p~9), 0< 5< 1, where p is the distance
to the closest edge. In boundary element methods it is
common to use piecewise polynomial trial functions on
meshes graded toward corner points. But because of the
complicated form of their kernels the quadrature of the
integral operators acting on piecewise polynomials is very
expensive. Therefore we use a modification of the trigono-
metric collocation scheme with a fixed number of piece-
wise polynomial trial functions. First we introduce
meshes of collocation points, which contain the corners
and are graded toward the corner points. This can be de-
rived by changing parameterization (13); for example, if
a(t;) is a corner point, then ¢’ (¢)=0"(¢;)=0 implies grad-
ing toward the corner. Further, for each collocation point
t;, there exists a Lagrangian trigonometric polynomial
pi(t) of degree 2N +1 such that

pk(t‘])zgk‘]’ k’j=09"'72N7

where §,; is Kronecker’s delta. For each edge and a fixed
number of collocation points ¢, around it, we replace the
corresponding Lagrangian trigonometric polynomial p,(¢)
by a cubic spline s,(¢) on the graded mesh with s,(¢;) = &;.
Thus we get a hybrid trigonometric-spline collocation
method, which combines the efficient computation of the
integrals for trigonometric polynomials with the good ap-
proximation properties of piecewise polynomials on
graded meshes near edges. The values at the collocation
point ¢; of the integrals on the basis spline s;, are com-
puted by a composite Gauss quadrature with a quadra-
ture mesh geometrically graded toward ¢; and depending
on the distance |o(t;) - o(t;)|. This leads to a fixed number
of additional calculations of the fundamental solutions
W ,.o for each discretization level compared with the
pure trigonometric method, which is, however, compen-
sated by a significant higher accuracy.

4. NUMERICAL RESULTS

The workability of the code developed has been confirmed
by numerous tests usually employed in classical and coni-
cal diffraction cases: more specifically, the reciprocity
theorem; stabilization of results under doubling of the
number of collocation points and varying of the calcula-
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tion accuracy of kernel functions; comparison with ana-
lytically amenable cases of plane interfaces; consideration
of the inverse (nonphysical) radiation condition; use of dif-
ferent variants of collocation point distribution on bound-
aries (mesh refinements); and comparison with the re-
sults obtained by another of our codes or with published
data, or with information sent to us by other researchers,
including results of measurements. A small part of such
numerical tests is demonstrated in this section.

A. Comparison

In Table 1 the numerical results of the present IM for a
dielectric lamellar grating with the ridge width ¢ and
depth 2H in a conical mounting are compared with those
of Table 2 of Li, who uses the modal method (MM) [33]. All
grating and light parameters are listed in the table title.
The agreement between the MM and the IM for the effi-
ciencies and polarization angles is almost perfect for all
reflection and transmission orders despite the very differ-
ent methods compared. Note that we use the same defini-
tions for polarization angles & and ¢ as in [30,33]. We
used 400 collocation points, mesh grading, and the direct
discretization of J~ to calculate this example that allo-
cates 188 Mbytes of memory. The energy balance error
calculated from Eq. (26) is ~1075. The average time taken
up by the example on a portable workstation IBM Think-
Pad R50p with an Intel Pentium M 1.7 GHz processor
and 2 Gbytes of RAM is ~4 s when operating on Linux
(kernel 2.6.17).

In Table 2 the numerical results of a comparison simi-
lar to that in Table 1 between the IM and the MM are
demonstrated for a conducting lamellar grating in a coni-
cal mounting (compare Table 3 of [33]). All grating and
light parameters are listed in the table title. The agree-
ment between the MM and the IM for the efficiencies and
polarization angles is, in general, good. The same accu-
racy parameters as in the previous example have been
used, and similar calculation times have been obtained on
the above-mentioned laptop. The energy balance error
calculated from Eq. (26) is ~1076.

In Tables 3 and 4 the numerical results of the IM for a
dielectric sine grating in a conical mounting are compared
with those of Table 2 of [7] of Li, who used for the pre-
sented data the coordinate transformation method (CM)
[5]. All grating and light parameters are listed in the
table titles. The agreement between the CM and the IM
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for the efficiencies is very good. We used 100 collocation
points and the numerical differentiation of V* to calculate
this example, which allocates 10 Mbytes of RAM. The en-
ergy balance error calculated from Eq. (26) is about 107°
for both components of the incident radiation. The aver-
age computation time taken up by the example on the
above mentioned laptop is ~0.2 s.

The results for a metal echelette grating with the blaze
angle ¢ and an apex angle of 90° (see Fig. 2) in conical
mounting are compared in Tables 5 and 6 with those of
[34] updated by Li, who has again used the CM to calcu-
late the efficiency of the grating with edges [35]. All grat-
ing and light parameters are listed in the table titles. As
one can see in Tables 5 and 6, again the agreement be-
tween the CM and the IM is very good for all order effi-
ciencies and polarization angles. We have used 800 collo-
cation points, mesh scaling near edges, and the
differentiation of V* to calculate this example, allocating
196 Mbytes of RAM. The average energy balance error
calculated from Eq. (26) is ~107°® for both polarization
states of the incident radiation. The average computation
time taken up by two values of the polarization angle on
the above mentioned laptop is ~18 s.

B. Convergence, Accuracy, and Computation Time

We will examine the convergence rate and the accuracy of
diffraction efficiencies with respect to the number of col-
location points N. For the efficiency convergence testing, a
magnitude of computational error cannot be reliably de-
duced from accuracy criteria based on a single computa-
tion such as the energy balance or the inverse radiation
condition tests. For this purpose comparative studies
should be used, i.e., N doubling or changing the configu-
ration of collocation points. We introduce a parameter
Ay as an integral measure of the efficiency error under
N-doubling tests. It is equal to the sum of absolute differ-
ences of respective diffraction order efficiencies for two
successive iterations with the number of collocation
points for each iteration of N=N,x 2#~1 where N is the
initial number of collocation points, 2=1,...,K, and K is
the total number of iterations. The magnitude of Ay,
gives approximately the correct digits in the numerical
results if the number of propagating diffraction orders is
small enough or only a few valuable orders exist. For
many propagating orders it can give a more pessimistic
error value.

Table 1. Diffraction Angles (6, ¢), Diffraction Efficiencies (7), and Polarization Angles (5, ) of a Dielectric
Lamellar Grating®

DO® oIM), deg  H(IM), deg  7(MM), % 2IM), % SMM), deg  &IM),deg  H(MM),deg  (IM), deg
R, 35.265 -30 0.1614 0.1612 64.32 64.32 -30.30 -30.24
R, 0 -30 0.3807 0.3807 65.97 66.0 -157.20 ~157.22
R, 35.264 -30 1.855 1.854 70.49 70.43 ~148.46 ~148.60
T, -45 ~19.471 3.363 3.363 51.06 51.05 32.28 32.28
T, -20.705 ~19.471 10.34 10.35 56.24 56.24 110.21 110.23
T, 0 ~19.471 31.87 31.87 46.55 46.54 99.03 99.02
T, 20.705 ~19.471 14.19 14.19 34.26 34.26 68.37 68.38
T, 45 ~19.471 37.83 37.83 46.33 46.34 86.81 86.83

“c1d=0.5,2H/d=0.5, €,=1, €.=2.25, u.=1, \/d=0.5, §=35.264°, $=30°, §=45°, and )=90°. IM, present integral method; MM, Li’s modal method [33].

"Diffraction order.



L. I. Goray and G. Schmidt

Vol. 27, No. 3/March 2010/J. Opt. Soc. Am. A 593

Table 2. Diffraction Angles (6, ¢), Diffraction Efficiencies (7), and Polarization Angles (4, {) of a Metallic
Lamellar Grating®

DO® 6(IM), deg $(IM), deg 7n(MM), % 7(IM), % S(MM), deg S(IM), deg H(MM), deg y(IM), deg
R_, -43.715 -20.705 7.31 7.52 62.48 61.85 52.74 48.30
R_; -9.007 -20.705 13.51 13.25 15.35 15.79 -12.05 -12.23
R, 22.208 -20.705 42.99 44.27 41.25 41.33 171.21 170.15
R, 65.852 -20.705 30.24 31.05 75.23 75.64 168.78 166.30

“c1d=0.5,2H/d=1, €,=1, €.=(-24.99,1), u.=1, N\/d=0.5, §=22.208°, p=20.705°, 5=45°, and =0. IM, present integral method; MM, Li’s modal method [33].

"Diffraction order.

To examine the convergence of diffraction efficiencies,
we choose as a sample the slanted (overhanging) lamellar
highly conducting grating similar to that from Figs. 10
and 11 of [36], a rather difficult case, but for the refractive
index v_=(0,100) instead of v_=(0.01,10) as in [36]. That
means that we study an almost perfectly conducting non-
function-profiled grating with a zero real part and a big
imaginary part of the refractive index, using our solver
for the finite conductivity, the case probably not possible

for many rigorous methods, even with all known improve-
ments and artificial inclusions [36]. Note that, using the
refractive index from the example of [36], the convergence
rate of our solver is so high that no interesting data to dis-
cuss can be seen even for small values of N. So in Fig. 3
the convergence of the diffraction efficiencies with respect
to the truncation parameter N under N doubling is dem-
onstrated for Ny=15 and K=9 by using the much harder
refractive index mentioned above. The efficiency values

Table 3. Diffraction Angles (6, ¢), Diffraction Efficiencies (7), and Polarization Angles (4, i) of a Dielectric
Sine Grating for B,=0¢

DO’ ¢IM),deg (M), deg  »(CM),%  7(IM),%  &CM),deg  &IM),deg  Y(CM),deg  y(IM), deg
R ~43.384 -15 1121 1121 71.01 70.99 3.62 3.60
R, -9.744 -15 3.741 3.741 26.91 26.90 0.93 0.93
R, 20.389 -15 3.873 3.873 63.25 63.25 178.16 178.18
R, 60 -15 10.33 10.33 88.93 88.93 178.06 178.05
T ~57.013 ~7.435 0.01858 0.01855 80.18 80.19 -114.16 -114.68
T, -35.921 ~7.435 0.002466  0.002482 52.39 52.58 99.81 100.24
T ~19.545 ~7.435 0.7396 0.7394 57.62 57.61 -179.23 -179.28
T, -4.729 ~7.435 4.922 4.922 22.89 22.90 174.83 174.84
T, 9.770 ~7.435 9.925 9.923 60.39 60.39 471 4.72
Ty 24.949 ~7.435 7.146 7.145 77.33 77.32 6.83 6.84
T, 42,371 ~7.435 51.83 51.83 84.43 84.43 ~5.77 -5.78
T, 67.826 ~7.435 6.351 6.351 84.85 84.85 -11.33 ~11.39

2H/d=0.3, €,=1, e.=4, u.=1, \/d=0.5, 6=60°, ¢=15°, 5=81.501°, and =0. IM, present integral method; CM, Li’s coordinate transformation method [5].

bDiffraction order.

Table 4. Diffraction Angles (6, ¢), Diffraction Efficiencies (7), and Polarization Angles (5, ) of a Dielectric
Sine Grating for E,=0"

DO® O(IM), deg ¢(IM), deg 7n(CM), % n(IM), % 6(CM), deg &(IM), deg Yy(CM), deg W(IM), deg
R4 -43.384 -15 1.121 1.121 71.01 70.99 3.62 3.60
R, -9.744 -15 3.741 3.741 26.91 26.90 0.93 0.93
R 20.389 -15 3.873 3.873 63.25 63.25 178.16 178.18
R, 60 -15 10.33 10.33 88.93 88.93 178.06 178.05
T 5 -57.013 -7.435 0.01858 0.01855 80.18 80.19 -114.16 -114.68
T4 -35.921 -7.435 0.002466 0.002482 52.39 52.58 99.81 100.24
T 3 -19.545 —-7.435 0.7396 0.7394 57.62 57.61 -179.23 -179.28
T o —4.729 —-7.435 4.922 4.922 22.89 22.90 174.83 174.84
T 4 9.770 -7.435 9.925 9.923 60.39 60.39 4.71 4.72
Ty 24.949 -7.435 7.146 7.145 77.33 77.32 6.83 6.84
T 42.371 —-7.435 51.83 51.83 84.43 84.43 -5.77 -5.78
T, 67.826 —-7.435 6.351 6.351 84.85 84.85 -11.33 -11.39

“QH/d=0.3, €,=1, €.=4, u.=1, \/d=0.5, 6=60°, ¢$=15°, 5=8.499°, and y=180°. IM, present integral method; CM, Li’s coordinate transformation method [5].

"Diffraction order.
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Table 5. Diffraction Angles (6, ¢), Diffraction Efficiencies (7), and Polarization Angles (4, ) of a Metallic
Echelette Grating for 6=07

DO’ o(IM), deg H(IM), deg 7(CM), % 7(IM), % S(CM), deg S(IM), deg »(CM), deg y(IM), deg
R, -40.746 -40 12.99 12.97 39.409 39.447 -175.87 -175.93
R, 0 -40 28.49 28.45 86.449 86.414 -51.16 -50.97
R, 40.746 -40 24.77 24.81 39.237 39.209 7.58 7.67

“=30°, €,=1, €.=(-45,28), u.=1, N\/d=0.5, =0, $=40°, and )=0. IM, present integral method; CM, Li’s coordinate transformation method [35].

"Diffraction order.

stabilize, and the convergence is starting at N=60 and
achieved with high accuracy at N=960. Note that Ajgg0 g
=4.21x107* and Azgy99=1.50 X 1074, and the energy bal-
ance error is ~10~* for these values of N. Thus, the con-
vergence rate is high enough, taking into account the dif-
ficult case tested. Moreover, because of solution
peculiarities for profiles with edges, the convergence rate
even is better for e_=(~10°,0), but the calculation time is
longer. The absorption calculated from Eq. (26) is very
small for such a grating (~107%), and its nonnegative
magnitude and decreasing are also a good measure of the
convergence and the calculation accuracy. One can also
check of the absolute accuracy of calculation results for
this example by using the perfect conductivity model. The
asymptotic efficiency values calculated by using this
model differ from those obtained by using the finite con-
ductivity approach (0.9105 and 0.0894 for -1 and 0 or-
ders, respectively) by not more than a few hundredths of a
percent. The total computation time for all points pre-
sented in Fig. 3 is ~35 min on the above mentioned PC,
and the required RAM is ~2 Gbytes. In this case the use
of nongraded meshes and the numerical differentiation of
V* gave the most accurate results compared with data ob-
tained by applying other computational options.

The computation time 7' for the considered one-
interface conical diffraction solver is essentially a func-
tion only of the number of unknowns, which is proportion-
ally to N. The general dependence T(IN) of boundary
integral equation formalisms is proportional to N® owing
to a square dependence on N for the Green’s functions and
their derivatives calculations and the summation of these
computed values that is proportional to N [17,23,24]. In
addition, a direct linear equation solver requires a time
that is also proportional to N°. To speed up the presented
calculation solver two substantial accelerations have been
used. The first one is Ewald’s method for the kernel com-

putation; the second one is solving systems of linear equa-
tions iteratively. As a result, the computation time is pro-
portional to N2, which is clearly seen in Fig. 4 for the
typical example described in Table 2. If the iterative
solver cannot give correct results after a prescribed num-
ber of iterations, then the direct solver is applied. Fortu-
nately, this situation occurs in infrequent or hard cases
only.

C. Efficiency of Grazing-Incidence Real-Groove-Profile
Off-Plane Grating in X-Rays
Grazing-incidence off-plane gratings have been suggested
for the International X-ray Observatory (IXO) [37]. Com-
pared with gratings in the classical in-plane mount, x-ray
gratings in the off-plane mount have the potential for su-
perior resolution and efficiency for the IXO mission. The
results of efficiency calculations for such a gold-blazed
soft-x-ray grating in a conical mount using the groove pro-
file derived from atomic force microscopy measurements
are shown in Fig. 5. The average interface shape having
123 nodes is presented in Fig. 6. All grating and light pa-
rameters are listed in the figure caption. The incident
beam in the rigorous calculations was assumed to be 81%
TM polarized, which means the electric vectors of the in-
cident wave and the diffracted waves are approximately
parallel to the surface of the grating at the given diffrac-
tion angles. In Fig. 5 the numerical results of the pre-
sented IM for a finite boundary conductivity are com-
pared with those based on the IM with the perfect
boundary conductivity multiplied by Fresnel reflectances.
The incident beam in the computations based on the per-
fect conductivity model was assumed to be 100% TE po-
larized (B,=0).

Rigorous computations carried out by the presented
method show that for the considered grating model all the
order efficiencies are not sensitive to a polarization state

Table 6. Diffraction Angles (6, ¢), Diffraction Efficiencies (7), and Polarization Angles (4, ¥) of a Metallic
Echelette Grating for 6=90°“

DO’ A(IM), deg H(IM), deg nCM), % wIM), % S(CM), deg &(IM), deg HCM), deg HIM), deg
R, -40.746 -40 53.15 53.15 54.0 54.0 13.31 13.37
R, 0 ~40 17.51 17.48 453 458 95.49 95.21
R, 40.746 -40 9.423 9.444 49.47 49.41 ~171.24 ~171.22

“=30°, €,=1, €.=(-45,28), u.=1, \/d=0.5, =0, ¢=40°, and y=0. IM, present integral method; CM Li’s coordinate transformation method [35].

"Diffraction order.
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Fig. 3. (Color online) Diffraction efficiencies of a highly conduct-
ing grating with ¢/d=0.5 and 2H/d=0.3, having the lamellar
profiles slanted at an angle of 45° and hence being overhanging
grooves, versus number of collocation points N. Other param-
eters are e€,=1, e =(-10%0), u.=1, N/d=0.8, 6=26.565°, ¢
=14.478°, §=0, and ¢=0.

and that efficiency jumps do not occur in the wavelength
range investigated. For any polarization state order effi-
ciencies differ from those presented in Fig. 5 by not more
than a few tenths of a percent. In contrast, calculations
based on the perfectly conducting boundary model are
very sensitive to the polarization state, and sharp Ray-
leigh anomalies for the TM-polarized incident radiation
occur. They were predicted earlier for such a grating us-
ing the in-plane boundary IM and the invariance theorem
[39]. As can be seen in Fig. 5, the agreement between the
data obtained by the finite conductivity model and the
perfect conductivity model is good when TE-polarized in-
cident radiation is used for the perfect conductivity
model.

Here 800 collocation points, no mesh scaling, and the
differentiation of V* have been used to calculate the
finite-conducting real-groove-profile example that allo-
cates a space of 144 Mbytes. The energy balance error cal-
culated from Eq. (26) is ~10~% in the investigated wave-
length range. The average computation time taken up by
one wavelength on the above mentioned laptop is ~40 s.
The time of a computation using the perfect conductivity
model is about five times shorter at the same accuracy.

40 1

Calculation time T, sec
N

0.4 T T T T T T T T
100 200 300 400 500 600 700 800 900 1000
Number of collocation points N

Fig. 4. (Color online) Computation time for the example de-
scribed in Table 2.
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Fig. 5. (Color online) Diffraction efficiencies of a gold polygonal
grating with 123 nodes, u,=1, and d=200 nm for the incident
wave with #=-30° and ¢=88°: finite conductivity model (&
=34.143° and ¢=0) and perfect conductivity model (B,~0: &
=30.015° and =180°) versus wavelength \. Refractive indices of
gold were taken from [38].

5. SUMMARY AND CONCLUSIONS

Off-plane scattering of time-harmonic plane waves by
one-dimensional structures has been considered. The
term “one-dimensional” refers to a general diffraction
grating or a rough mirror having arbitrary conductivity
on a planar surface in R®, which is periodic in one surface
direction, constant in the second, and has an arbitrary
profile including edges and nonfunctions. The electromag-
netic formulation of conical diffraction by gratings trans-
formed to a system of two Helmholtz equations in R2,
which are coupled by jump conditions at the interfaces be-
tween different materials, was presented.

The integral equations for conical diffraction were ob-
tained containing the boundary integrals of the single-
and double-layer potentials, and the tangential derivative
of single-layer potentials were interpreted as singular in-
tegrals. A full rigorous theoretical foundation of the coni-
cal boundary IM was established for the first time. Be-
sides, we provided a formula for the direct calculation of
the absorption of gratings in conical mounts. Some rules
that are expedient for the numerical implementation of
the described theory were presented.
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Fig. 6. Average groove profile measured by atomic force

microscopy.
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The results of efficiencies and polarization angles com-
paring with the data obtained by Li using the modal
(lamellar profiles) and the coordinate transformation (si-
nus and echelette profiles) conical solvers for transmis-
sion and reflection gratings are in a good agreement. The
high rate of convergence, the high accuracy, and the short
computation time of the presented solver were demon-
strated for various samples. An example of rigorous effi-
ciency computations of the soft-x-ray grazing-incidence
off-plane grating suggested for the IXO mission was dem-
onstrated by using the 123-node border profile measured
by atomic force microscopy and realistic refractive indices
data.

The solver developed and tested is found to be accurate
and efficient for solving conical diffraction problems, in-
cluding difficult cases of high-conductive surfaces, borders
with edges, real border profiles, and gratings working at
very short wavelengths.
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