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Off-plane scattering of time-harmonic plane waves by a plane diffraction grating with arbitrary conductivity
and general surface profile is considered in a rigorous electromagnetic formulation. Integral equations for coni-
cal diffraction are obtained involving, besides the boundary integrals of the single and double layer potentials,
singular integrals, the tangential derivative of single-layer potentials. We derive an explicit formula for the
calculation of the absorption in conical diffraction. Some rules that are expedient for the numerical implemen-
tation of the theory are presented. The efficiencies and polarization angles compared with those obtained by
Lifeng Li for transmission and reflection gratings are in a good agreement. The code developed and tested is
found to be accurate and efficient for solving off-plane diffraction problems including high-conductive gratings,
surfaces with edges, real profiles, and gratings working at short wavelengths. © 2010 Optical Society of
America
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. INTRODUCTION
oday a lot of optical applications of conical diffraction (off
lane—see Fig. 1) by gratings are well known: in particu-
ar, gratings working in the x-ray and extreme ultraviolet
anges at grazing angles; shallow and deep high-
onductive, anomalously absorbing gratings illuminated
t near-normal and grazing incidence; high-spatial-
requency, deep transmission gratings having high antire-
ection and polarization conversion properties; and gen-
ralized spectroscopic ellipsometry and scatterometry
echniques. For the numerical simulation of conical dif-
raction by optical gratings of arbitrary groove profiles
nd conductivity several rigorous methods have been pro-
osed. Among them we know differential [1,2], coordinate
ransformation [3–6], modal [7], fictitious sources [8,9],
nd finite element [10,11] methods. In [12] T-matrix and
ntegral equation methods (IMs) were described for off-
lane transmission and low-conducting sine-profiled grat-
ngs.

For the classical (in-plane) diffraction problems bound-
ry IMs have been established as an efficient and accu-
ate numerical tool. The methods are used successfully to
ackle high-conductive deep-groove gratings in the TM po-
arization, profile curves with corners, echelles, gratings
ith thin coated layers, randomly rough mirrors and
ratings, and diffraction problems at very small
avelength-to-period ratios [13–22]. Many different inte-
ral formulations have been proposed and implemented;
ee, e.g., [22–30]. The aim of this paper is to study an in-
egral method for conical diffraction on the simplest
odel, the diffraction of a time-harmonic plane wave by

ne surface, which in Cartesian coordinates �x ,y ,z� is pe-
1084-7529/10/030585-13/$15.00 © 2
iodic in the x- and invariant in the z-direction and sepa-
ates two different materials. Special attention is paid to
he main aspects of the IM for arbitrarily polarized plane
aves and surface gratings having any outline and con-
uctivity.
The electromagnetic formulation of the diffraction by

eneral gratings, which are modeled as infinite periodic
tructures, can be reduced to a system of Helmholtz equa-
ions for the z components of the electric and magnetic
elds in R2, where the solutions have to be quasiperiodic

n one variable, to be subject to radiation conditions with
espect to the other, and to satisfy certain jump conditions
t the interfaces between different materials of the dif-
raction grating. In the case of classical diffraction, when
he incident wave vector is orthogonal to the z direction,
he system splits into independent problems for the two
asic polarizations of the incident wave, whereas for the
ase of conical diffraction the boundary values of the z
omponents as well as their normal and tangential de-
ivatives at the interfaces are coupled. Thus the un-
nowns are scalar functions in the case of classical dif-
raction, and they are two-component vector functions in
he conical case.

In the considered case of one interface we reduce the
ystem of Helmholtz equations to a 2�2 system of inte-
ral equations, which contain, besides the boundary inte-
rals of the single- and double-layer potentials, addition-
lly the tangential derivative of single-layer potentials,
hich are singular integrals. The corresponding theory is
escribed in Section 2. The diffraction problem and
oundary relations between values of the fields across the
oundary are formulated in explicit form in Subsection
010 Optical Society of America
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.A. The respective integral equations in terms of bound-
ry potentials with detailed discussions, formulas, and
ump relations can be found in Subsection 2.B. A more
eneral treatment of the energy conservation law appli-
able to off-plane absorption gratings is considered in
ubsection 2.C. The numerical implementation approach
xpedient for the calculation of far fields and polarization
roperties of conical diffraction by gratings is described
riefly in Section 3. Diverse numerical tests devoted to
omparing, convergence, accuracy, computation time, and
btaining results for an important case are given in Sec-
ion 4. In Subsection 4.A we compare some of our results
ith data obtained by other well-established conical ap-
roaches for different groove profile and conductivity
ratings. Some information about convergence, accuracy,
nd complexity of the presented method is included in
ubsection 4.B. Finally, in Subsection 4.C a numerical ex-
eriment for the off-plane grazing-incident real-groove-
rofile grating working in the soft-x-ray range is demon-
trated as an illustration of possibilities of the software
eveloped.

. THEORY
. Diffraction Problem
e denote by ex, ez, and ez the unit vectors of the axis of

he Cartesian coordinates. The grating is a cylindrical
urface whose generatrices are parallel to the z axis (see
ig. 1) and whose cross section is described by the curve �

Fig. 2). We suppose that � is not self-intersecting and d
eriodic in the x direction. The grating surface is the
oundary between two regions G±�R�R3, which are
lled with materials of constant electric permittivity �±
nd magnetic permeability �±.

x
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−3−4 −1
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−2
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ig. 1. (Color online) Schematic conical diffraction by a grating.
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ig. 2. Schematic diffraction by a simple grating in cross
ection.
We deal only with time-harmonic fields; consequently,
he electric and magnetic fields are represented by the
omplex vectors E and H, with a time dependence
xp�−i�t� taken into account. The wave vector k+ of the
ncident wave in G+�R, where �+,�+�0, is in general not
erpendicular to the grooves �k+·ez�0�. Setting k+= �� ,
� ,	�, the surface is illuminated by a electromagnetic
lane wave

Ei = pei��x−�y+	z�, Hi = sei��x−�y+	z�,

hich due to the periodicity of � is scattered into a finite
umber of plane waves in G+�R and possibly in G−�R.
he wave vectors of these outgoing modes lie on the sur-

ace of a cone whose axis is parallel to the z axis. There-
ore one speaks of conical diffraction.

The components of k+ satisfy

� � 0, �2 + �2 + 	2 = �2�+�+,

nd they are expressed by using the incidence angles

� , ����
 /2:

��,− �,	� = ���+�+�sin 
 cos �,− cos 
 cos �,sin ��.

lassical diffraction corresponds to k+·ez=0, whereas �
0 characterizes conical diffraction.
Since the geometry is invariant with respect to any

ranslation parallel to the z axis, we make the ansatz for
he total field

�E,H��x,y,z� = �E,H��x,y�ei	z, �1�

ith E ,H :R2→C3. This transforms the time-harmonic
axwell equations in R3,

� � E = i��H, � � H = − i��E, �2�

ith piecewise constant functions ��x ,y�=�±, ��x ,y�=�±
or �x ,y��G±, into a two-dimensional problem. This was
escribed in [9] and analytically justified in [31]. Intro-
ucing the transverse components

ET = E − Ezez, HT = H − Hzez,

epresentation (1) and Eqs. (2) lead to

��2�� − 	2�ET = i	 � Ez + i�� � � �Hzez�,

��2�� − 	2�HT = i	 � Hz − i�� � � �Ezez�. �3�

oting that 	=���+�+�1/2 sin �, we introduce the piece-
ise constant function

��x,y� = ���+�+ − �+�+ sin2 ��1/2 = �+ �x,y� � G+,

��−�− − �+�+ sin2 ��1/2 = �− �x,y� � G−,� �4�

ith the square root z1/2=r1/2 exp�i� /2� for z=r exp�i��,
���2
. Hence Eqs. (3) show that under the condition
�0, which will be assumed throughout, the components
z ,Hz determine the electromagnetic field �E ,H�.
Additionally, Maxwell’s equations (2) imply that Ez ,Hz

atisfy the Helmholtz equations

�� + �2�2�Ez = �� + �2�2�Hz = 0 �5�

n G±. The continuity of the tangential components of E
nd H on the surface takes the form
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��n,0� � E���R = ��n,0� � H���R = 0,

here �n ,0�= �nx ,ny ,0� is the normal vector on ��R and
�n ,0��E���R denotes the jump of the function �n ,0��E
cross the surface. This leads to the jump conditions for
z ,Hz across the interface � of the form

�Ez�� = �Hz�� = 0,

	 	

�2�2�tHz +
��

�2�2�nEz

�

= 	 	

�2�2�tEz −
��

�2�2�nHz

�

= 0.

ere �n=nx�x+ny�y and �t=−ny�x+nx�y are the normal
nd tangential derivatives on �, respectively. We intro-
uce Bz= ��+/�+�1/2Hz and use 	=���+�+�1/2 sin � to re-
rite the jump conditions in the form

�Ez�� = �Hz�� = 0,

	 ��nEz

�2 

�

= − �+ sin �	 �tBz

�2 

�

,

	��nBz

�2 

�

= �+ sin �	 �tEz

�2 

�

. �6�

he z components of the incoming field

Ez
i �x,y� = pze

i��x−�y�, Bz
i �x,y� = qze

i��x−�y�

with qz = ��+/�+�1/2sz, �7�

re � quasiperiodic in x of period d, i.e., satisfy the rela-
ion

u�x + d,y� = eid�u�x,y�.

n view of the periodicity of � and �, this motivates us to
eek �-quasiperiodic solutions Ez ,Bz. Furthermore, the
iffracted fields must remain bounded at infinity, which
mplies the well-known outgoing wave conditions

�Ez,Bz��x,y� = �Ez
i ,Bz

i � + �
n�Z

�En
+,Bn

+�ei��nx+�n
+y�, y � H,

�Ez,Bz��x,y� = �
n�Z

�En
−,Bn

−�ei��nx−�n
−y�, y � − H, �8�

ith the unknown Rayleigh coefficients En
± ,Hn

±�C, where
� ��x ,y� : �y��H
, and �n, �n

± are given by

�n = � +
2
n

d
, �n

± = ��2�±
2 − �n

2

with 0 � arg �n
± � 
.

In the following it is always assumed that

0 � arg �−, arg �− � 
 with arg��−�−� � 2
, �9�

hich holds for all existing optical (meta)materials. Then
�arg �−

2 �2
 and �n
− are properly defined for all n.

With the z components of the total fields denoted
Ez = �u+ + Ez
i

u−
�, Bz = �v+ + Bz

i in G+,

v− in G−,�
he problem of Eqs. (5), (6), and (8) can be written as

�u± + �2�±
2u± = �v± + �2�±

2v± = 0 in G±, �10�

u− = u+ + Ez
i ,

�−�nu−

�−
2 −

�+�n�u+ + Ez
i �

�+
2

= �+ sin �� 1

�+
2 −

1

�−
2��tv− on �,

v− = v+ + Bz
i ,

�−�nv−

�−
2 −

�+�n�v+ + Bz
i �

�+
2

= − �+ sin �� 1

�+
2 −

1

�−
2��tu− on �, �11�

�u+,v+��x,y� = �
n=−�

�

�En
+,Bn

+�ei��nx+�n
+y� for y � H,

�u−,v−��x,y� = �
n=−�

�

�En
−,Bn

−�ei��nx−�n
−y� for y � − H.

�12�

. Integral Equations
here exist different ways to transform the problem of
qs. (10)–(12) to integral equations. We combine here the
irect and indirect approaches as proposed in [23,24] for
he case of classical diffraction. Let � be given by a piece-
ise C2 parameterization

��t� = �X�t�,Y�t��,

X�t + 1� = X�t� + d,

Y�t + 1� = Y�t�, t � R; �13�

.e., the continuous functions X ,Y are piecewise C2 and
�t1����t2� if t1� t2. If the profile � has corners, then we
uppose additionally that the angles between adjacent
angents at the corners are strictly between 0 and 2
.

The potentials that provide �-quasiperiodic solutions of
he Helmholtz equation

�u + k2u = 0 with 0 � arg k2 � 2
 �14�

re based on the quasiperiodic fundamental solution of
eriod d,

�k,��P� = lim
N→�

i

2d �
n=−N

N ei�nX+i�n�Y�

�n
, P = �X,Y�.

ere we assume that �n= �k2−�n
2�1/2�0 for all n. The

ingle- and double-layer potentials are defined by

S��P� = 2�
�

��Q��k,��P − Q�d�Q,
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D��P� = 2�
�

��Q��n�Q��k,��P − Q�d�Q, �15�

here � is one period of the interface �, i.e. �= ���t� : t
�t0 , t0+1�
 for some t0. In Eqs. (15) d�Q denotes integra-

ion with respect to the arc length and n�Q� is the normal
o � at Q�� pointing into G−. Obviously, for
-quasiperiodic densities � on � the potentials S�, D� are
quasiperiodic in X and do not depend on the choice of �.
The potentials provide the usual representation formu-

as. Any �-quasiperiodic function u that satisfies in G+ the
elmholtz equation (14) and the radiation condition

u�x,y� = �
n=−�

�

unei�nx+i�n�y�, �y� � H,

dmits the representation

1

2
�S�nu − Du� = �u in G+

0 in G−
� , �16�

here the normal n points into G−. Under the same as-
umptions for a function u in G− the representation

1

2
�D − S�nu� = �0 in G+

u in G−
� �17�

s valid.
Restriction of the potentials S and D to the profile curve
are the so-called boundary integral operators. The po-

entials provide the usual jump relations of classical po-
ential theory. The single-layer potential is continuous
cross �:

�S��+�P� = �S��−�P� = V��P�,

here the upper signs � and � denote the limits of the
otentials for points in G± tending in nontangential direc-
ion to P��, and V is a integral operator with logarithmic
ingularity

V��P� = 2�
�

�k,��P − Q���Q�d�Q, P � �.

he double-layer potential has a jump if crossing �:

�D��+ = �K − I��, �D��− = �K + I�� �18�

with the boundary double-layer potential

K��P� = 2�
�

��Q��n�Q��k,��P − Q�d�Q + ���P� − 1���P�.

ere ��P�� �0,2�, P��, denotes the ratio of the angle in
+ at P and 
, i.e., ��P�=1 outside corner points of �. The
ormal derivative of S� at � exists outside corners and
as the limits

��nS��+ = �L + I��, ��nS��− = �L − I��, �19�

here L is the integral operator on � with the kernel
� �P−Q�,
n�P� k,�
L��P� = 2�
�

��Q��n�P��k,��P − Q�d�Q, P � �.

n the following the tangential derivative of single-layer
otentials

�t�V���P� = 2�t�
�

�k,��P − Q���Q�d�Q, P � �,

lso occurs. Interchanging differentiation and integration
eads to an integral kernel with the nonintegrable main
ingularity

t�P� · �P − Q�

�P − Q�2
,

here t�P� denotes the tangential vector to � at P. There-
ore the tangential derivative of single-layer potentials
annot be expressed as a usual integral. But it can be in-
erpreted as a Cauchy principal value or singular integral

J��P� = 2 lim
�→0

�
�\��P,��

��Q��t�P��k,��P − Q�d�Q = �t�V���P�,

�20�

here ��P ,�� is the subarc of � of length 2� with the mid-
oint P. Similarly, one can define the singular integral

H��P� = 2 lim
�→0

�
�\��P,��

��Q��t�Q��k,��P − Q�d�Q, �21�

hich by using integration by parts gives for
-quasiperiodic �

��P� = − 2�
�

�k,��P − Q��t��Q�d�Q = − V��t���P�, P � �.

ote that V�tV=VJ=−HV.
Now we are in the position to formulate the integral

quations for solving the conical diffraction problem
10)–(12). In order to represent u± and v± as layer poten-
ials we assume in what follows that the parameters are
uch that �n

±= ��2�±
2 −�n

2�1/2�0 for all n. Since arg �−
�0,
� [see assumption (9)] the boundary integral opera-

ors corresponding to the fundamental solution ���±,� are
ell defined, and by Eqs. (16) and (17)

u+ =
1

2
�S+�nu+ − D+u+�,

v+ =
1

2
�S+�nv+ − D+v+� in G+,

Ez
i =

1

2
�D+Ez

i − S+�nEz
i �,

Bz
i =

1

2
�D+Bz

i − S+�nBz
i � in G−.

ere we denote by S± the single-layer potential defined on
with the fundamental solution � . Correspondingly
��±,�
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± is the double-layer potential over � with the normal
erivative of ���±,� as kernel function. Taking the limits
n �, the jump relations (18) lead to

V+�n�u+ + Ez
i � − �I + K+��u+ + Ez

i � = �2Ez
i ��,

V+�n�v+ + Bz
i � − �I + K+��v+ + Bz

i � = �2Bz
i ��, �22�

here V± denote the boundary single-layer potentials

V±��P� = 2�
�

��Q����±,��P − Q�d�Q, P � �,

nd the operators K± and L± are defined analogously. The
olutions in G− are sought as single-layer potentials

u− = S−w, v− = S−�

ith certain auxiliary densities w ,�. Since by Eqs. (19)

�u−�� = V−w, ��nu−�� = �L− − I�w,

�v−�� = V−�, ��nv−�� = �L− − I��,

e see from Eqs. (22) that jump conditions (11) are valid
hen the unknowns w ,� satisfy the system of integral
quations

�−�+
2

�+�−
2 V+�L− − I�w − �I + K+�V−w − sin ��1 −

�+
2

�−
2�V+�tV

−�

= 2Ez
i ,

�−�+
2

�+�−
2 V+�L− − I�� − �I + K+�V−� + sin ��1 −

�+
2

�−
2�V+�tV

−w

= 2Bz
i . �23�

ecall that we assume �−
2 �0 and �2�±

2 −�n
2 �0 for all n.

For the analytical and numerical treatment of Eqs. (23)
t is advantageous to use the relations

V+�tV
− = − H+V− = V+J−

see definitions (20) and (21)]. Then Eqs. (23) become a
ystem of singular integral equations, for which powerful
nalytical and numerical methods exist.
If the solution of system (23) is found, then the solution

f the conical diffraction problem Eqs. (10)–(12), can be
etermined by the relations

u+ = −
1

2� �−�+
2

�+�−
2 S+�I − L−�w + D+V−w

+
sin ���−

2 − �+
2�

�−
2 S+J−��, u− = S−w,

v+ = −
1

2��−�+
2

�+�−
2 S+�I − L−�� + D+V−�

−
sin ���−

2 − �+
2�

�−
2 S+J−w�, v− = S−�.
A detailed mathematical analysis of system (23) is
iven in [32]. In particular, the following properties have
een established:

1. The integral equations are equivalent to the Helm-
oltz system if the operators V+ and V− are invertible.
2. If the profile � has no corners, then Eqs. (23) are

olvable if �−+�+�0 and �−+�+�0.
3. If the profile � has corners, then Eqs. (23) are solv-

ble if �−/�+ and �−/�+� �−� ,−1/�� for some ��1, depend-
ng on the angles at these corners.

4. The solution of Eqs. (23) is unique if Im �−�0 and
m �−�0 with Im��−+�−��0.

. Energy Balance for Conical Diffraction
uppose that Ez ,Bz are a solution of the partial differen-
ial formulation of conical diffraction, Eqs. (5), (6), and (8).
he expression of the conservation of energy can be de-
ived from a variational equality for Ez and Bz in a peri-
dic cell �H, which has in the x direction the width d, is
ounded by the straight lines �y= ±H
, and contains �. We
ultiply Eq. (5) by

�

�+�2Ez,
�

�+�2Bz

nd apply Green’s formula in the subdomains �H�G±.
hen, by using the quasiperiodicity of Ez ,Bz and jump re-

ations (6), one derives

�
�H

�

�+
� 1

�2 ��Ez�2 − �2�Ez�2� + sin �� 1

�+
2 −

1

�−
2��

�

�tBzEz

−
1

�+
2�

��H�

�nEzEz −
�−

�+�−
2�

��−H�

�nEzEz = 0, �24�

�
�H

�

�+
� 1

�2 ��Bz�2 − �2�Bz�2� − sin �� 1

�+
2 −

1

�−
2��

�

�tEzBz

−
1

�+
2�

��H�

�nBzBz −
�−

�+�−
2�

��−H�

�nBzBz = 0, �25�

here ��±H� denotes the upper and the lower straight
oundary of �H, respectively, and the normal n on ��±H�
s directed outward. The outgoing wave conditions (8) im-
ly

�
��H�

�nEzEz = i���E0
+�2 − �pz�2 + 2i Im�E0

+pze
i�H��

+ i�
n�0

�n
+�En

+�2e−2H Im �n
+
,

�
��−H�

�nEzEz = i�
n�Z

�n
−�En

−�2e−2H Im �n
−
,

nd similar expressions for the boundary integrals involv-
ng Bz.

Note that �+ and �+ are positive, and let �− and �− be
eal. Taking the imaginary part of Eqs. (24) and (25), one
ets
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�

�+
2 �pz�2 −

1

�+
2 �

�n
+�0

�n
+�En

+�2 −
�−

�+�−
2 �

�n
−�0

�n
−�En

−�2

= − sin �� 1

�+
2 −

1

�−
2�Im�

�

�tBzEz,

�

�+
2 �qz�2 −

1

�+
2 �

�n
+�0

�n
+�Bn

+�2 −
�−

�+�−
2 �

�n
−�0

�n
−�Bn

−�2

= sin �� 1

�+
2 −

1

�−
2�Im�

�

�tEzBz,

hich in view of

Im�
�

�tBzEz = Im�
�

�tEzBz

ead to

�pz�2 + �qz�2 = �
�n

+�0

�n
+

�
��En

+�2 + �Bn
+�2�

+
�+

2

�−
2 �

�n
−�0

�n
−

�
� �−

�+
�En

−�2 +
�−

�+
�Bn

−�2� .

hus, for lossless gratings, the energy of the incident
ave �pz�2+ �qz�2 equals the sum of reflection order efficien-

ies

R = �
�n

+�0

�n
+

�
��En

+�2 + �Bn
+�2�

lus the sum of transmission order efficiencies

T = �
�n

−�0

�n
−

�
� �−

�+
�En

−�2 +
�−

�+
�Bn

−�2� .

If Im �−�0 or Im �−�0, then T=0 and in general �pz�2
�qz�2�R. The remaining part of the energy is absorbed

n the substrate. Therefore, one tool to check the quality
f the numerical solution for absorbing gratings is the re-
uirement that the sum of the reflected energy and the
bsorption energy should be equal to the energy of the in-
ident wave.

To obtain an expression for the absorption energy we
pply Green’s formula to Ez and Bz in the domain
H�G−, which gives, since the normal n on � is interior

or �H�G−,

�
�H�G−

�−

�+
� 1

�−
2 ��Ez�2 − �2�Ez�2� −

�−

�+�−
2�

��−H�

�nEzEz

= −
�−

�+�−
2�

�

�nEzEz,
�
�H�G−

�−

�+
� 1

�−
2 ��Bz�2 − �2�Bz�2� −

�−

�+�−
2�

��−H�

�nBzBz

= −
�−

�+�−
2�

�

�nBzBz.

ence, the imaginary parts of Eqs. (24) and (25) become

Im
�−

�+�−
2�

�

�nEzEz − sin � Im� 1

�+
2 −

1

�−
2��

�

�tBzEz

+
�

�+
2 ��E0

+�2 − �pz�2� + �
�n

+�0

�n
+

�+
2 �En

+�2 = 0,

Im
�−

�+�−
2�

�

�nBzBz + sin � Im� 1

�+
2 −

1

�−
2��

�

�tEzBz

+
�

�+
2 ��B0

+�2 − �qz�2� + �
�n

+�0

�n
+

�+
2 �Bn

+�2 = 0,

esulting in

pz�2 + �qz�2 = �
�n

+�0

�n
+

�
��En

+�2 + �Bn
+�2� + Im

�−�+
2

�+�−
2�
�

�

�nEzEz

+ Im
�−�+

2

�+�−
2�
�

�

�nBzBz −
sin �

�

��Im�1 −
�+

2

�−
2��

�

��tBzEz − �tEzBz��
= �

�n
+�0

�n
+

�
��En

+�2 + �Bn
+�2� +

�+
2

�
Im�

�

� �−

�+�−
2 �nEzEz

+
�−

�+�−
2 �nBzBz�

+
2�+

2 sin �

�
Im

1

�−
2 Re�

�

Ez�tBz.

hus we derive the conservation of energy for absorbing
ratings

�pz�2 + �qz�2 = R + A

ith the absorption energy of conical diffraction

A =
�+

2

�
Im� 1

�−
2� �−

�+
�

�

�nEzEz +
�−

�+
�

�

�nBzBz

+ 2 sin � Re�
�

Ez�tBz�� .
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n the case �=0 this formula provides the expression of
he heat absorption energy for in-plane diffraction de-
ived in [21]. In terms of the solution w ,� of integral equa-
ions (23) the absorption energy is given by the formula

A =
�+

2

�
Im� 1

�−
2�

�

� �−

�+
�L− − I�wV−w +

�−

�+
�L− − I��V−���

+
2�+

2 sin �

�
Im

1

�−
2 Re�

�

V−wJ−�. �26�

. NUMERICAL IMPLEMENTATION
e discuss briefly the numerical solution of system (23).
et � be parameterized by Eqs. (13). In the case of a
mooth profile � a trigonometric collocation method is
sed; i.e., we approximate

w���t��e−i�X�t�����t�� � wN�t� = �
k=−N

N

ake2
ikt,

����t��e−i�X�t�����t�� � �N�t� = �
k=−N

N

bke2
ikt, �27�

nd the coefficients �ak
 , �bk
 are such that system (23) is
atisfied at the 2N+1 collocation points tk=k / �2N+1�, k
0, . . . ,2N.
Similar to [24], the advantage of trigonometric methods

s utilized in order that the integral operators V±, H+, and
− with singular kernels can be approximated properly.
or example, using the parameterization ��t� the single-

ayer potential operator of w can be approximated by

V±w���t�� � − 2ei�X�t���
0

1

log�2 sin 
�t − s��wN�s�ds

+�
0

1

g±�t,s�wN�s�ds�
nd the singular integral J±w by

J±w���t�� � ei�X�t���
0

1

cot 
�t − s�wN�s�ds

+�
0

1

j±�t,s�wN�s�ds� ,

here the functions g±�t ,s�, j±�t ,s� are continuous and pe-
iodic in t and s. The action of the integral operators with
he kernels log�2 sin 
�t−s�� and cot 
�t−s� on trigonomet-
ic polynomials is given analytically. All other integrals
ave continuous kernels, and they are approximated by
he trapezoidal rule as in Nyström’s method. So the dis-
retization error depends only on the error made in com-
uting the functions g±�t ,s�, j±�t ,s� and the continuous
ernels of K+ and L−, i.e., in computing the fundamental
olution and their derivatives. Here we use the exact
wald method (see [22]) with a number of summation

erms to ensure discretization errors of order N−3. Finally
he operator products V+L−, K+V−, H+V−, or V+J− are ap-
roximated by the products of the corresponding discreti-
ation matrices. Note that instead of H+V− or V+J− one
an also perform the discretization of V+�tV−, involving a
umerical differentiation. Numerical tests and further in-
estigations can show which one is preferable for given ef-
ciency calculations.
For the solution of the discrete system we use a precon-

itioned generalized minimal residual method similar to
hat described in [22]. The number of iterations until a
rescribed residual error is reached depends, of course, on
he refraction indices and the profile, but it is nearly in-
ependent of the number of unknowns. However, it
hould be noted that modern implementations of the
APACK and BLAS software packages on multiprocessor
achines make direct solving a competitive alternative to

terative solution methods even for rather large systems.
If the profile curve has corners, then the convergence

roperties of methods with only trigonometric trial func-
ions deteriorate owing to singularities of the densities w
nd � of the form O��−��, 0���1, where � is the distance
o the closest edge. In boundary element methods it is
ommon to use piecewise polynomial trial functions on
eshes graded toward corner points. But because of the

omplicated form of their kernels the quadrature of the
ntegral operators acting on piecewise polynomials is very
xpensive. Therefore we use a modification of the trigono-
etric collocation scheme with a fixed number of piece-
ise polynomial trial functions. First we introduce
eshes of collocation points, which contain the corners

nd are graded toward the corner points. This can be de-
ived by changing parameterization (13); for example, if
�tj� is a corner point, then ���tj�=���tj�=0 implies grad-

ng toward the corner. Further, for each collocation point
k there exists a Lagrangian trigonometric polynomial
k�t� of degree 2N+1 such that

pk�tj� = �kj, k,j = 0, . . . ,2N,

here �kj is Kronecker’s delta. For each edge and a fixed
umber of collocation points tk around it, we replace the
orresponding Lagrangian trigonometric polynomial pk�t�
y a cubic spline sk�t� on the graded mesh with sk�tj�=�kj.
hus we get a hybrid trigonometric-spline collocation
ethod, which combines the efficient computation of the

ntegrals for trigonometric polynomials with the good ap-
roximation properties of piecewise polynomials on
raded meshes near edges. The values at the collocation
oint tj of the integrals on the basis spline sk are com-
uted by a composite Gauss quadrature with a quadra-
ure mesh geometrically graded toward tj and depending
n the distance ���tk�−��tj��. This leads to a fixed number
f additional calculations of the fundamental solutions
��±,� for each discretization level compared with the

ure trigonometric method, which is, however, compen-
ated by a significant higher accuracy.

. NUMERICAL RESULTS
he workability of the code developed has been confirmed
y numerous tests usually employed in classical and coni-
al diffraction cases: more specifically, the reciprocity
heorem; stabilization of results under doubling of the
umber of collocation points and varying of the calcula-
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ion accuracy of kernel functions; comparison with ana-
ytically amenable cases of plane interfaces; consideration
f the inverse (nonphysical) radiation condition; use of dif-
erent variants of collocation point distribution on bound-
ries (mesh refinements); and comparison with the re-
ults obtained by another of our codes or with published
ata, or with information sent to us by other researchers,
ncluding results of measurements. A small part of such
umerical tests is demonstrated in this section.

. Comparison
n Table 1 the numerical results of the present IM for a
ielectric lamellar grating with the ridge width c and
epth 2H in a conical mounting are compared with those
f Table 2 of Li, who uses the modal method (MM) [33]. All
rating and light parameters are listed in the table title.
he agreement between the MM and the IM for the effi-
iencies and polarization angles is almost perfect for all
eflection and transmission orders despite the very differ-
nt methods compared. Note that we use the same defini-
ions for polarization angles � and � as in [30,33]. We
sed 400 collocation points, mesh grading, and the direct
iscretization of J− to calculate this example that allo-
ates 188 Mbytes of memory. The energy balance error
alculated from Eq. (26) is �10−5. The average time taken
p by the example on a portable workstation IBM Think-
ad R50p with an Intel Pentium M 1.7 GHz processor
nd 2 Gbytes of RAM is �4 s when operating on Linux
kernel 2.6.17).

In Table 2 the numerical results of a comparison simi-
ar to that in Table 1 between the IM and the MM are
emonstrated for a conducting lamellar grating in a coni-
al mounting (compare Table 3 of [33]). All grating and
ight parameters are listed in the table title. The agree-

ent between the MM and the IM for the efficiencies and
olarization angles is, in general, good. The same accu-
acy parameters as in the previous example have been
sed, and similar calculation times have been obtained on
he above-mentioned laptop. The energy balance error
alculated from Eq. (26) is �10−6.

In Tables 3 and 4 the numerical results of the IM for a
ielectric sine grating in a conical mounting are compared
ith those of Table 2 of [7] of Li, who used for the pre-

ented data the coordinate transformation method (CM)
5]. All grating and light parameters are listed in the
able titles. The agreement between the CM and the IM

Table 1. Diffraction Angles (�, �), Diffraction Effici
Lamell

DOb 
�IM�, deg ��IM�, deg ��MM�, % ��IM�

R−2 35.265 −30 0.1614 0.16
R−1 0 −30 0.3807 0.38
R0 35.264 −30 1.855 1.85
T−3 −45 −19.471 3.363 3.36
T−2 −20.705 −19.471 10.34 10.35
T−1 0 −19.471 31.87 31.87
T0 20.705 −19.471 14.19 14.19
T1 45 −19.471 37.83 37.83

ac /d=0.5, 2H /d=0.5, �+=1, �−=2.25, � =1, ! /d=0.5, 
=35.264°, �=30°, �=
bDiffraction order.
or the efficiencies is very good. We used 100 collocation
oints and the numerical differentiation of V+ to calculate
his example, which allocates 10 Mbytes of RAM. The en-
rgy balance error calculated from Eq. (26) is about 10−5

or both components of the incident radiation. The aver-
ge computation time taken up by the example on the
bove mentioned laptop is �0.2 s.
The results for a metal echelette grating with the blaze

ngle � and an apex angle of 90° (see Fig. 2) in conical
ounting are compared in Tables 5 and 6 with those of

34] updated by Li, who has again used the CM to calcu-
ate the efficiency of the grating with edges [35]. All grat-
ng and light parameters are listed in the table titles. As
ne can see in Tables 5 and 6, again the agreement be-
ween the CM and the IM is very good for all order effi-
iencies and polarization angles. We have used 800 collo-
ation points, mesh scaling near edges, and the
ifferentiation of V+ to calculate this example, allocating
96 Mbytes of RAM. The average energy balance error
alculated from Eq. (26) is �10−5 for both polarization
tates of the incident radiation. The average computation
ime taken up by two values of the polarization angle on
he above mentioned laptop is �18 s.

. Convergence, Accuracy, and Computation Time
e will examine the convergence rate and the accuracy of

iffraction efficiencies with respect to the number of col-
ocation points N. For the efficiency convergence testing, a

agnitude of computational error cannot be reliably de-
uced from accuracy criteria based on a single computa-
ion such as the energy balance or the inverse radiation
ondition tests. For this purpose comparative studies
hould be used, i.e., N doubling or changing the configu-
ation of collocation points. We introduce a parameter
N,k as an integral measure of the efficiency error under
-doubling tests. It is equal to the sum of absolute differ-

nces of respective diffraction order efficiencies for two
uccessive iterations with the number of collocation
oints for each iteration of N=N0�2k−1, where N0 is the
nitial number of collocation points, k=1, . . . ,K, and K is
he total number of iterations. The magnitude of �N,k
ives approximately the correct digits in the numerical
esults if the number of propagating diffraction orders is
mall enough or only a few valuable orders exist. For
any propagating orders it can give a more pessimistic

rror value.

s „�…, and Polarization Angles (�, �) of a Dielectric
atinga

��MM�, deg ��IM�, deg ��MM�, deg ��IM�, deg

64.32 64.32 −30.30 −30.24
65.97 66.0 −157.20 −157.22
70.49 70.43 −148.46 −148.60
51.06 51.05 32.28 32.28
56.24 56.24 110.21 110.23
46.55 46.54 99.03 99.02
34.26 34.26 68.37 68.38
46.33 46.34 86.81 86.83

�=90°. IM, present integral method; MM, Li’s modal method �33�.
encie
ar Gr

, %
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To examine the convergence of diffraction efficiencies,
e choose as a sample the slanted (overhanging) lamellar
ighly conducting grating similar to that from Figs. 10
nd 11 of [36], a rather difficult case, but for the refractive
ndex "−= �0,100� instead of "−= �0.01,10� as in [36]. That

eans that we study an almost perfectly conducting non-
unction-profiled grating with a zero real part and a big
maginary part of the refractive index, using our solver
or the finite conductivity, the case probably not possible

Table 2. Diffraction Angles (�, �), Diffraction Effic
Lamell

DOb 
�IM�, deg ��IM�, deg ��MM�, % ��IM�

R−2 −43.715 −20.705 7.31 7.5
R−1 −9.007 −20.705 13.51 13.2
R0 22.208 −20.705 42.99 44.2
R1 65.852 −20.705 30.24 31.0

ac /d=0.5, 2H /d=1, �+=1, �−= �−24.99,1�, � =1, ! /d=0.5, 
=22.208°, �=20.
bDiffraction order.

Table 3. Diffraction Angles (�, �), Diffraction Effici
Sine Grat

DOb 
�IM�, deg ��IM�, deg ��CM�, % ��IM�

R−3 −43.384 −15 1.121 1.121
R−2 −9.744 −15 3.741 3.741
R−1 20.389 −15 3.873 3.873
R0 60 −15 10.33 10.33
T−5 −57.013 −7.435 0.01858 0.018
T−4 −35.921 −7.435 0.002466 0.002
T−3 −19.545 −7.435 0.7396 0.739
T−2 −4.729 −7.435 4.922 4.922
T−1 9.770 −7.435 9.925 9.923
T0 24.949 −7.435 7.146 7.145
T1 42.371 −7.435 51.83 51.83
T2 67.826 −7.435 6.351 6.351

a2H /d=0.3, �+=1, �−=4, � =1, ! /d=0.5, 
=60°, �=15°, �=81.501°, and �=
bDiffraction order.

Table 4. Diffraction Angles (�, �), Diffraction Effici
Sine Grat

DOb 
�IM�, deg ��IM�, deg ��CM�, % ��IM�

R−3 −43.384 −15 1.121 1.121
R−2 −9.744 −15 3.741 3.741
R−1 20.389 −15 3.873 3.873
R0 60 −15 10.33 10.33
T−5 −57.013 −7.435 0.01858 0.018
T−4 −35.921 −7.435 0.002466 0.002
T−3 −19.545 −7.435 0.7396 0.739
T−2 −4.729 −7.435 4.922 4.922
T−1 9.770 −7.435 9.925 9.923
T0 24.949 −7.435 7.146 7.145
T1 42.371 −7.435 51.83 51.83
T2 67.826 −7.435 6.351 6.351

a2H /d=0.3, �+=1, �−=4, � =1, ! /d=0.5, 
=60°, �=15°, �=8.499°, and �=1
bDiffraction order.
or many rigorous methods, even with all known improve-
ents and artificial inclusions [36]. Note that, using the

efractive index from the example of [36], the convergence
ate of our solver is so high that no interesting data to dis-
uss can be seen even for small values of N. So in Fig. 3
he convergence of the diffraction efficiencies with respect
o the truncation parameter N under N doubling is dem-
nstrated for N0=15 and K=9 by using the much harder
efractive index mentioned above. The efficiency values

es „�…, and Polarization Angles (�, �) of a Metallic
atinga

��MM�, deg ��IM�, deg ��MM�, deg ��IM�, deg

62.48 61.85 52.74 48.30
15.35 15.79 −12.05 −12.23
41.25 41.33 171.21 170.15
75.23 75.64 168.78 166.30

45°, and �=0. IM, present integral method; MM, Li’s modal method �33�.

s „�…, and Polarization Angles (�, �) of a Dielectric
or Bz=0a

��CM�, deg ��IM�, deg ��CM�, deg ��IM�, deg

71.01 70.99 3.62 3.60
26.91 26.90 0.93 0.93
63.25 63.25 178.16 178.18
88.93 88.93 178.06 178.05
80.18 80.19 −114.16 −114.68
52.39 52.58 99.81 100.24
57.62 57.61 −179.23 −179.28
22.89 22.90 174.83 174.84
60.39 60.39 4.71 4.72
77.33 77.32 6.83 6.84
84.43 84.43 −5.77 −5.78
84.85 84.85 −11.33 −11.39

resent integral method; CM, Li’s coordinate transformation method �5�.

s „�…, and Polarization Angles (�, �) of a Dielectric
or Ez=0a

��CM�, deg ��IM�, deg ��CM�, deg ��IM�, deg

71.01 70.99 3.62 3.60
26.91 26.90 0.93 0.93
63.25 63.25 178.16 178.18
88.93 88.93 178.06 178.05
80.18 80.19 −114.16 −114.68
52.39 52.58 99.81 100.24
57.62 57.61 −179.23 −179.28
22.89 22.90 174.83 174.84
60.39 60.39 4.71 4.72
77.33 77.32 6.83 6.84
84.43 84.43 −5.77 −5.78
84.85 84.85 −11.33 −11.39

present integral method; CM, Li’s coordinate transformation method �5�.
ienci
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tabilize, and the convergence is starting at N=60 and
chieved with high accuracy at N=960. Note that �1920,8
4.21�10−4 and �3840,9=1.50�10−4, and the energy bal-
nce error is �10−4 for these values of N. Thus, the con-
ergence rate is high enough, taking into account the dif-
cult case tested. Moreover, because of solution
eculiarities for profiles with edges, the convergence rate
ven is better for �−= �−105,0�, but the calculation time is
onger. The absorption calculated from Eq. (26) is very
mall for such a grating ��10−5�, and its nonnegative
agnitude and decreasing are also a good measure of the

onvergence and the calculation accuracy. One can also
heck of the absolute accuracy of calculation results for
his example by using the perfect conductivity model. The
symptotic efficiency values calculated by using this
odel differ from those obtained by using the finite con-

uctivity approach (0.9105 and 0.0894 for −1 and 0 or-
ers, respectively) by not more than a few hundredths of a
ercent. The total computation time for all points pre-
ented in Fig. 3 is �35 min on the above mentioned PC,
nd the required RAM is �2 Gbytes. In this case the use
f nongraded meshes and the numerical differentiation of
+ gave the most accurate results compared with data ob-

ained by applying other computational options.
The computation time T for the considered one-

nterface conical diffraction solver is essentially a func-
ion only of the number of unknowns, which is proportion-
lly to N. The general dependence T�N� of boundary
ntegral equation formalisms is proportional to N3 owing
o a square dependence on N for the Green’s functions and
heir derivatives calculations and the summation of these
omputed values that is proportional to N [17,23,24]. In
ddition, a direct linear equation solver requires a time
hat is also proportional to N3. To speed up the presented
alculation solver two substantial accelerations have been
sed. The first one is Ewald’s method for the kernel com-

Table 5. Diffraction Angles (�, �), Diffraction Effic
Echelette G

DOb 
�IM�, deg ��IM�, deg ��CM�, % ��IM�

R−1 −40.746 −40 12.99 12.9
R0 0 −40 28.49 28.4
R1 40.746 −40 24.77 24.8

a�=30°, �+=1, �−= �−45,28�, � =1, ! /d=0.5, 
=0, �=40°, and �=0. IM, pres
bDiffraction order.
utation; the second one is solving systems of linear equa-
ions iteratively. As a result, the computation time is pro-
ortional to N2, which is clearly seen in Fig. 4 for the
ypical example described in Table 2. If the iterative
olver cannot give correct results after a prescribed num-
er of iterations, then the direct solver is applied. Fortu-
ately, this situation occurs in infrequent or hard cases
nly.

. Efficiency of Grazing-Incidence Real-Groove-Profile
ff-Plane Grating in X-Rays
razing-incidence off-plane gratings have been suggested

or the International X-ray Observatory (IXO) [37]. Com-
ared with gratings in the classical in-plane mount, x-ray
ratings in the off-plane mount have the potential for su-
erior resolution and efficiency for the IXO mission. The
esults of efficiency calculations for such a gold-blazed
oft-x-ray grating in a conical mount using the groove pro-
le derived from atomic force microscopy measurements
re shown in Fig. 5. The average interface shape having
23 nodes is presented in Fig. 6. All grating and light pa-
ameters are listed in the figure caption. The incident
eam in the rigorous calculations was assumed to be 81%
M polarized, which means the electric vectors of the in-
ident wave and the diffracted waves are approximately
arallel to the surface of the grating at the given diffrac-
ion angles. In Fig. 5 the numerical results of the pre-
ented IM for a finite boundary conductivity are com-
ared with those based on the IM with the perfect
oundary conductivity multiplied by Fresnel reflectances.
he incident beam in the computations based on the per-

ect conductivity model was assumed to be 100% TE po-
arized �Bz�0�.

Rigorous computations carried out by the presented
ethod show that for the considered grating model all the

rder efficiencies are not sensitive to a polarization state

es „�…, and Polarization Angles (�, �) of a Metallic
g for �=0a

��CM�, deg ��IM�, deg ��CM�, deg ��IM�, deg

39.409 39.447 −175.87 −175.93
86.449 86.414 −51.16 −50.97
39.237 39.209 7.58 7.67

ral method; CM, Li’s coordinate transformation method �35�.
ienci
ratin

, %

7
5
1

ent integ
Table 6. Diffraction Angles (�, �), Diffraction Efficiencies „�…, and Polarization Angles (�, �) of a Metallic
Echelette Grating for �=90°a

DOb 
�IM�, deg ��IM�, deg ��CM�, % ��IM�, % ��CM�, deg ��IM�, deg ��CM�, deg ��IM�, deg

R−1 −40.746 −40 53.15 53.15 54.0 54.0 13.31 13.37
R0 0 −40 17.51 17.48 4.53 4.58 95.49 95.21
R1 40.746 −40 9.423 9.444 49.47 49.41 −171.24 −171.22

a�=30°, �+=1, �−= �−45,28�, � =1, ! /d=0.5, 
=0, �=40°, and �=0. IM, present integral method; CM Li’s coordinate transformation method �35�.
bDiffraction order.
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nd that efficiency jumps do not occur in the wavelength
ange investigated. For any polarization state order effi-
iencies differ from those presented in Fig. 5 by not more
han a few tenths of a percent. In contrast, calculations
ased on the perfectly conducting boundary model are
ery sensitive to the polarization state, and sharp Ray-
eigh anomalies for the TM-polarized incident radiation
ccur. They were predicted earlier for such a grating us-
ng the in-plane boundary IM and the invariance theorem
39]. As can be seen in Fig. 5, the agreement between the
ata obtained by the finite conductivity model and the
erfect conductivity model is good when TE-polarized in-
ident radiation is used for the perfect conductivity
odel.
Here 800 collocation points, no mesh scaling, and the

ifferentiation of V+ have been used to calculate the
nite-conducting real-groove-profile example that allo-
ates a space of 144 Mbytes. The energy balance error cal-
ulated from Eq. (26) is �10−4 in the investigated wave-
ength range. The average computation time taken up by
ne wavelength on the above mentioned laptop is �40 s.
he time of a computation using the perfect conductivity
odel is about five times shorter at the same accuracy.
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ig. 3. (Color online) Diffraction efficiencies of a highly conduct-
ng grating with c /d=0.5 and 2H /d=0.3, having the lamellar
rofiles slanted at an angle of 45° and hence being overhanging
rooves, versus number of collocation points N. Other param-
ters are �+=1, �−= �−104,0�, �±=1, ! /d=0.8, 
=26.565°, �
14.478°, �=0, and �=0.
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C
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ig. 4. (Color online) Computation time for the example de-
cribed in Table 2.
. SUMMARY AND CONCLUSIONS
ff-plane scattering of time-harmonic plane waves by
ne-dimensional structures has been considered. The
erm “one-dimensional” refers to a general diffraction
rating or a rough mirror having arbitrary conductivity
n a planar surface in R3, which is periodic in one surface
irection, constant in the second, and has an arbitrary
rofile including edges and nonfunctions. The electromag-
etic formulation of conical diffraction by gratings trans-
ormed to a system of two Helmholtz equations in R2,
hich are coupled by jump conditions at the interfaces be-

ween different materials, was presented.
The integral equations for conical diffraction were ob-

ained containing the boundary integrals of the single-
nd double-layer potentials, and the tangential derivative
f single-layer potentials were interpreted as singular in-
egrals. A full rigorous theoretical foundation of the coni-
al boundary IM was established for the first time. Be-
ides, we provided a formula for the direct calculation of
he absorption of gratings in conical mounts. Some rules
hat are expedient for the numerical implementation of
he described theory were presented.
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ig. 5. (Color online) Diffraction efficiencies of a gold polygonal
rating with 123 nodes, �±=1, and d=200 nm for the incident
ave with 
=−30° and �=88°: finite conductivity model (�
34.143° and �=0) and perfect conductivity model (Bz�0: �
30.015° and �=180°) versus wavelength !. Refractive indices of
old were taken from [38].
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ig. 6. Average groove profile measured by atomic force
icroscopy.
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The results of efficiencies and polarization angles com-
aring with the data obtained by Li using the modal
lamellar profiles) and the coordinate transformation (si-
us and echelette profiles) conical solvers for transmis-
ion and reflection gratings are in a good agreement. The
igh rate of convergence, the high accuracy, and the short
omputation time of the presented solver were demon-
trated for various samples. An example of rigorous effi-
iency computations of the soft-x-ray grazing-incidence
ff-plane grating suggested for the IXO mission was dem-
nstrated by using the 123-node border profile measured
y atomic force microscopy and realistic refractive indices
ata.
The solver developed and tested is found to be accurate

nd efficient for solving conical diffraction problems, in-
luding difficult cases of high-conductive surfaces, borders
ith edges, real border profiles, and gratings working at
ery short wavelengths.
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