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The paper presents a comprehensive numerical analysis of x-ray and neutron scattering from
finite-conducting rough surfaces which is performed in the frame of the boundary integral equation
method in a rigorous formulation for high ratios of characteristic dimension to wavelength. The
single integral equation obtained involves boundary integrals of the single and double layer
potentials. A more general treatment of the energy conservation law applicable to absorption
gratings and rough mirrors is considered. In order to compute the scattering intensity of rough
surfaces using the forward electromagnetic solver, Monte Carlo simulation is employed to average
the deterministic diffraction grating efficiency due to individual surfaces over an ensemble of
realizations. Some rules appropriate for numerical implementation of the theory at small
wavelength-to-period ratios are presented. The difference between the rigorous approach and
approximations can be clearly seen in specular reflectances of Au mirrors with different roughness
parameters at wavelengths where grazing incidence occurs at close to or larger than the critical
angle. This difference may give rise to wrong estimates of rms roughness and correlation length if
they are obtained by comparing experimental data with calculations. Besides, the rigorous approach
permits taking into account any known roughness statistics and allows exact computation of diffuse
scattering. © 2010 American Institute of Physics. �doi:10.1063/1.3467937�

I. INTRODUCTION

Multiwave and multiple diffraction, refraction, absorp-
tion, waveguiding, and wave deformation govern to a con-
siderable extent scattering of x-ray and extreme ultraviolet
�EUV� radiation and cold neutrons from nanoroughness of
continuous media. Inclusion of these pure dynamic effects,
which requires application of electromagnetic theory, permits
one to calculate the absolute intensity of the specular com-
ponent and describe adequately the intensity distribution of
the diffuse component which may have resonance peaks. Be-
sides, there are cases in which the vector character of x-rays
cannot be ignored.1,2 Some surfaces are deterministic �e.g.,
perfect gratings� and some are random �e.g., polished mir-
rors�. Some surfaces are one-dimensional �1D� �e.g., real 1D
gratings and cutting mirrors� but most are two-dimensional
�2D� �e.g., 2D gratings, ocean surfaces, and surfaces with
atomic scale roughness�. Any number of possible combina-
tions between these four characteristics may be present in
real structures �e.g., machined 1D deterministic surfaces with
2D random roughness�. The question of the closeness of re-
sults for 1D and 2D surfaces is of interest, since numerical
methods for 1D surfaces are well established and efficient,
and widely used for surfaces with 2D roughness.3 Despite
the impressive progress reached recently in development of
exact numerical methods of investigation of wave diffraction
from boundary roughness,3–6 the present author is aware only
of asymptotic and perturbation approaches to the analysis of
x-ray and neutron scattering, even from 1D rough surfaces,

such as the Kirchhoff approximation, method of parabolic
wave equation, Rayleigh method, Born approximation �BA�,
distorted-wave BA �DWBA�, and a few others.7–9 Note also
that method mentioned in Ref. 10 as exact for inclusion of
any type roughness and based on the boundary integral equa-
tions cannot be considered as valid for x-rays on account of
an absence of implementation details and examples in that
paper.

The well-known Debye–Waller �DW� asymptotic, which
can be derived from the BA, is commonly used in the region
where angle of incidence � measured from the surface nor-
mal must be smaller and far from the critical incidence angle.
The Nevot–Croce �NC� model, which can be derived from
the first-order DWBA, is used mostly at grazing incidence
near or below the critical angle. The both factors of the re-
duction in specular reflectance are valid, strictly speaking, in
the case of small rough boundary heights h and very large
�DW� or very small �NC� correlation lengths �.8 The second-
order DWBA should be used to take into account arbitrary
magnitudes of �, however it is valid generally for small val-
ues of h cos � /�, where � is the vacuum wavelength. More-
over, it was shown11 and corroborated by the present com-
putations that the rms roughness � and �, which determines
the properties of scattering from rough surfaces, become no
longer adequate for description of the diffuse intensity pat-
tern after � cos � has exceeded approximately � /10. The use
of the above or even more sophisticated approximations in
cases of the intermediate incident angle range and compa-
rable magnitudes of �, �, and � also appears very question-
able.a�Electronic mail: lig@pcgrate.com.
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It is well-known that solution of the 2D Helmholtz equa-
tion with any rigorous numerical code meets with difficulties
at high ratios of characteristic dimension to wavelength.12–18

While the known boundary integral equation methods are
robust, reliable, and efficient, they exhibit poor convergence
and loss of accuracy in the high-frequency range due to nu-
merical contamination in quadratures. Increasing matrix size
and enhancing computation precision, as well as application
of convergence speed-up techniques, which are successfully
explored in low-frequency and mid-frequency ranges, lead to
unreasonably stringent requirements for computing times
and storage capacities in high-frequency ranges. The rigor-
ous modified method of boundary integral equations �MIM�
�Refs. 19–21� has been widely employed in analyzing the
efficiency of bulk and multilayered diffraction gratings, in-
cluding but not restricted22 to those in the x-ray-EUV
range.23 The approach is very accurate and fairly fast con-
vergent in the range of very small ratios of � to period d and
groove depth h, particularly for structures with real boundary
profiles.24–26 The method, which has been developed in the
frame of rigorous theory �i.e., with the use of Maxwell’s
equations, rigorous boundary conditions and radiation condi-
tions�, permits application of optical methods to analysis of
specular and nonspecular x-ray scattering from rough mirrors
in real space. In the case of one boundary the system of two
Helmholtz equations can be reduced to one integral equation
which contains boundary integrals of the single and double
layer potentials.

For exact account of random roughness, the method
makes use of the well-known model �see, e.g., Refs. 27 and
28�, in which a randomized surface is identified with a grat-
ing with a large d containing a large number of random as-
perities. Thus, the method analyzes periodical structures,
which may be considered as gratings from a pure mathemati-
cal standpoint while representing in actual fact a rough sur-
face if d is chosen much larger than the correlation length �
of the asperities. Furthermore, in cases where � is compa-
rable with �, and the number of orders is large, the continu-
ous angular distribution of diffuse intensity reflected from a
random boundary can be described by a discrete angular dis-
tribution of grating order efficiency. The author must empha-
size that this approach enables one to deal with particular
profiles of the deterministic surface roughness to calculate
the average scattering intensity using the forward electro-
magnetic code and Monte Carlo simulation. Provided the
sample is large enough, the roughness properties average out
but there is no assumption including averaging in this model.
The present paper addresses rigorous simulation of grazing-
incidence x-ray scattering as applied to finite-conducting 1D
surfaces with random roughnesses in the case of beam inci-
dence in the plane perpendicular to the relief �classical 2D
diffraction�. The boundary integral equations applicable for
the three-dimensional �3D� case of conical �off-plane� dif-
fraction is described in detail in Ref. 29. Data obtained by
the rigorous approach and approximate methods are found to
be noticeably different, however, in the cases of near-normal
incidence, arbitrary incident beam orientation, perfect

boundary conductivity, multilayer rough mirrors and ran-
domly rough diffraction gratings as well; but these problems
have to be considered elsewhere.

The paper is organized as follows. The corresponding
theory of the developed MIM is described in Sec. II. The
diffraction problem, boundary conditions, and outgoing wave
conditions are formulated in Sec. II A. The respective inte-
gral equation expressed in terms of boundary potentials can
be found in Sec. II B. A more general treatment of the energy
conservation law applicable to absorption gratings and rough
mirrors is considered in Sec. II C. The peculiarities of the
MIM and its numerical implementation expedient for the cal-
culation of � /d�1 and � /h�1 diffraction problems are de-
scribed in Sec. III. The discretization details, evaluation of
kernels and their summation rule are described in Secs.
III A–III C, respectively. A numerical implementation ap-
proach and its validation are described briefly in Sec. III D.
Finally, in Sec. IV numerical experiments for randomly
rough Au mirrors operating with hard and soft x-rays are
demonstrated as an illustration of the possibilities inherent in
the MIM.

II. THEORY

A. Diffraction problem

The grating is a cylindrical surface whose generatrices
are parallel to the z-axis and whose cross section in the
�x ,y�-plane is given by the simple curve � �see Fig. 1�. We
assume that the open arc � denotes one period d in
x-direction of �. One refers to the nonabsorption top G+ and
generally absorption bottom G− semi-infinite media. It is as-
sumed that the radiation incident from G+ in the Y0X plane
with the pulsatance 	 scales with time as e−i	t and that the
process is stationary. Because � is not varying in the z di-
rection, it is possible to consider the two fundamental cases
of polarization separately, i.e., the TE mode �with the z com-
ponent Ez

i of the electric field Ei parallel to the grating
grooves� and the TM mode �with the z component Hz

i of the
magnetic field Hi parallel to the grating grooves�.18 The
wavenumber inside G+
R is denoted by k+= �� ,−� ,0�.
Thus, the original 3D problem reduces to a 2D one and be-
comes independent of the z direction of the grating
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FIG. 1. Schematic cross section of a grating.
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ui�x,y� = Ez
i�x,y�ei��x−�y� �TE,s� ,

ui�x,y� = Hz
i�x,y�ei��x−�y� �TM,p� , �1�

where �=k+ sin �, �=k+ cos �, and ���
� /2.
The components of the wave vector k� for �x ,y��G�

satisfy the conditions ��0 and �k��2=	2����= �	���2,
with piecewise constant functions of electric permittivity and
magnetic permeability ��x ,y�=�� and ��x ,y�=��, respec-
tively. Due to the periodicity of �, the incident wave is scat-
tered into a finite number of plane waves in G+
R. Classi-
cal diffraction corresponds to k+ ·ez=0, whereas k+ ·ez�0
characterizes conical diffraction.29

Maxwell’s equations imply that the total fields Ez=u� or
Hz=u� satisfy the Helmholtz equation in G�

�� + �k��2�u� = 0. �2�

The z-components of the incoming field are
�-quasiperiodic in x with a period d, i.e., they satisfy the
relation

ui�x + d,y� = eid�ui�x,y� . �3�

The periodicity � and � suggests that one should look
for �-quasiperiodic solutions u��x ,y�. Furthermore, the dif-
fracted field must remain bounded at infinity, which implies
the well-known outgoing wave conditions �the Sommerfeld
radiation conditions� represented in the form of the Rayleigh
expansion in the far field with complex cm

+ order amplitudes
in the upper �+� and lower ��� mediums

u+�x,y� = ui + �
m�Z

cm
+ ei��mx+�m

+ y�, y � h/2,

u−�x,y� = �
m�Z

cm
− ei��mx−�m

− y�, y � − h/2, �4�

where �� ��x ,y� : �y�
h /2	 and �m, �m
� for the order number

m are given by relations

�m = � +
2�m

d
, �m

� = 
�k��2 − �m
2 , �5�

where 0�arg �m
�
�.

By invoking the continuity of the tangential components
of E and H on the surface we can write the jump conditions
in the form

�u+�� = �u−�� = 0,

�v+�� = q�v−��, �6�

where �.� denotes the jump of functions on �, v�=�nu� is
the normal derivative �n=nx�x+ny�y on �, and q=�− /�+ or
q=�− /�+ for the s-component or p-component, respectively.

Denoting the normal derivative of z-components of the
incident field by vi, we see that the problems �1�–�6� is de-
fined completely in respect to u� and v�.

B. Integral equations

The boundary integral equation approach of the present
paper transforms the problems �1�–�6� into a system of inte-
gral equations over the profile curve. To transform the dif-

fraction problem for the quasiperiodic Helmholtz equations
in R2 to integral equations the boundary integral operators
have been used. Analytical properties of integral operators,
including avoidance of hypersingular operators, are de-
scribed in many publications �see, e.g., Refs. 30–32�. More-
over, the existence and uniqueness of solutions in appropriate
function spaces ensure convergence of a numerical method.

We assume here that � is a nonself-intersecting profile
given by a piecewise C2 parametrization ��s�= �X�s� ,Y�s��
with s�R, which has to fulfil conditions

X�0� = 0, X�L� = d, Y�0� = Y�L�, Y�s + L� = Y�s�,

X�s + L� = X�s� + d, Y�s + L� = Y�s� , �7�

where L is the arc length of the profile �, ��s1����s2� if
s1�s2, and

����s�� = 
�X��s��2 + �Y��s��2 � 0,

nX = − Y��s�/����s��, nY = X��s�/����s�� , �8�

where nX�P� and nY�P� are components of the vector n�P�
normal to � at P�X�s� ,Y�s�� and pointing into G+, and the
prime denotes d /ds. If the profile � has corners, then we
assume additionally that the angles between adjacent tan-
gents at the corners are confined between 0 and 2�.20 The
functions u� ,v� are identified by the upper �+� and lower
��� limits of the single and double layer potentials on �
defined as

Vk�
� w��P� = �

�

w��Q��k��P − Q�d�Q,

Wk�
� ���P� = �

�

���Q��n�Q��k��P − Q�d�Q, �9�

where w� ,�� are unknown density functions, P ,Q��, and
�k��P� are the quasiperiodic fundamental solutions �the
Green functions� of period d given by the infinite series

�k��P� =
i

4 �
m=−�

�

H0
�1��k�
�X − md�2 + Y2� 
 eimd�

=
i

2d
�

m=−�

�
ei��mX+�m

��Y��

�m
� , �10�

where H0
�1� is the first Hankel function of zero order. In Eq.

�9�, d�Q denotes integration with respect to the arc length.
The solution is sought in the general form as the sum of

the single and double layer potentials30

u+ = �Vk+w+��x,y� + �Wk+�+��x,y� + ui�x,y� ,

u− = �Vk−w−��x,y� + �Wk−�−��x,y� . �11�

With Eq. �11�, the conditions �2�–�4� are fulfilled auto-
matically, and the boundary conditions also have to be ful-
filled. The single and double layer potentials satisfy the con-
tinuity condition for Vk�� and the well-known jump relation
for Wk�� through �:
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�Vk���+ = �Vk���− = �Vk��� ,

�Wk���� = �Wk��� � �/2. �12�

Now Eq. �6� read as

Vk+w+ + �+/2 + Wk+�+ + ui = Vk−w− − �−/2 + Wk−�−,

q�Uk+w+ + w+/2 + �nWk+�+ + vi� = Uk−w− − w−/2

+ �nWk−�−, �13�

with the additional boundary operator for the normal deriva-
tive of the single layer potential defined by

Uk�
� w��P� = �

�

w��Q��n�P��k��P − Q�d�Q. �14�

A few degrees of freedom exist for choosing a system of
integral equations, and the uniqueness theorem can be
applied.31 For example, the hypersingular operators �nWk���

can be eliminated by an appropriate choice of the unknown
functions. Also, single integral equations can be derived
from Eqs. �11� and �13�.31 The choice of functions �+=0,
�−=−u+, and w−=−q�nu+ leads to the solution of the single
integral equation in respect to w+ �Refs. 18 and 26�

�qVk−�Uk+ + I/2� + �Wk− + I/2�Vk+�w+ = − ui�Wk− + I/2�

− qviVk−. �15�

The integral Eq. �15� has been implemented in the code
described in the present paper.

C. Efficiency, absorption, and energy balance

Diffraction efficiencies or far field patterns for the re-
flected fields can easily be found from the corresponding
boundary values. In the upper medium the amplitudes for
diffraction order number m can be obtained from Eq. �11�
and the Rayleigh expansion for the plane waves �see Eq. �4��
by equating coefficients for the corresponding harmonics:

cm
+ = �

�

e−i�2�mX�s�/d+�m
+ Y�s��w+�Q�d�Q/2id�m

+ . �16�

The efficiency of a diffracted order represents the frac-
tion of power radiated in each order. Defining the power as
the flux of the Pointing vector modulus �Si�=0.5 Re Ei
Hi

�Ō denotes the complex conjugate of O� through a normal-
ized rectangle parallel to the �x ,z�-plane, the ratio of the
power of a reflected propagating order and of the incident
wave gives the diffraction efficiency �m

+ of this order. For the
partially polarized incident light with the s-component and
the p-component the efficiency can be found as

�m
+ = ��cm

+s�2sin2 � + �cm
+p�2cos2 ���m

+ /� , �17�

where incident and diffracted plane waves are given by the
polarization angle �=arctan��Ez

i � / �Hz
i �� with the normalization

�Ez
i �2+ �Hz

i �2=1.
For � /d�1 the discrete order efficiencies is an approxi-

mation of the differential scattering intensity �bistatic scatter-
ing coefficient33� for a continuum of scattered angles

���m� = d cos2��m��cm
+s,p�2/� , �18�

where cos��m�=�m
+ /k+ and

�
�m

+
�0

�m
+ = �

−�/2

�/2

���m�d�m. �19�

One of the most important accuracy criteria based on a
single computation is the energy balance that can be gener-
alized in the lossy case described below. If the grating is
absorbing, Im �−�0, then conservation of energy is ex-
pressed by a criterion

R + A = �
�m

+
�0

�m
+ + A = 1, �20�

where R is the sum of the reflection order efficiencies and A
is called the absorption coefficient or simply the absorption
in the given diffraction problem. Besides being physically
meaningful, expression �20� is very useful as one of numeri-
cal accuracy tests for computational codes and especially im-
portant in the x-ray and EUV ranges, where absorption plays
a predominant role. In the lossy case, one needs an indepen-
dently calculated quantity A to verify Eq. �20�. For such a
quantity, we use the absorption integral introduced in Ref. 22
and derived in Appendix. The sum R+A is actually the en-
ergy balance for an absorbing grating or a rough mirror, and
the extent to which it approaches unity is a measure of the
accuracy of a calculation.

III. PECULIARITIES OF MIM AND ITS NUMERICAL
IMPLEMENTATION

The boundary integral equation theory is so flexible that
we can point out a few areas of its modifiability.20 �1� In the
physical model one can choose boundary types �periodical or
nonperiodical, closed or nonclosed, smooth or having edges,
randomly rough or deterministic, etc.� and boundary condi-
tions �rigorous or nonrigorous, perfect or finite conducting,
etc.�. �2� In the mathematical structure, integral representa-
tions using various potential operators and/or integral formu-
las can be considered. �3� In the method of discretization,
trial functions �piecewise constant, or trigonometric, or
spline, or delta, etc.� and numerical scheme of discretization
including treatment of corners in boundary profile curves
�Galerkin, or collocation, or Nyström collocation, hybrid,
etc.� can be chosen. �4� In the low-level details one can de-
fine methods of calculations of kernels �direct methods using
Hankel or exponential functions, or Ewald’s method, or
high-order summations, etc.; and using or nonusing accelera-
tion techniques like as Kummer or Euler–Knopp summation,
or single-term corrections, etc.�, meshes of sampling �collo-
cation� points �uniform or nonuniform�, quadrature rules
�trapezium or more sophisticated�, solutions of linear sys-
tems �direct methods or iterative solvers�, caching of repeat-
ing quantities �exponential functions, kernel functions, etc.�.
A self-consistent explanation of various integral methods is
well beyond the scope of this study, and one should rather be
addressed to references. In this section, special attention is
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paid to important aspects of the presented MIM for small
� /d diffraction problems in connection with �3� and �4�, and
also, briefly, numerical implementations.

A. Discretization details

In practice, the convergence and accuracy of efficiency
computation significantly depend on a proper choice of trial
functions, discretization schemes, and respective quadrature
rules. Usually, one of collocation methods �method of mo-
ments� is used with the distribution of points on a uniform
grid.12 To transform the diffraction problem for the Helm-
holtz equations in R2 to the single integral equation using the
boundary integral operators the combination of direct and
indirect approaches is applied here as classified in Refs. 18
and 31. In the MIM, the fastest Nyström discretization with
piecewise constant trial functions is used �cf. Ref. 22�, where
the integrals in the integral operators are approximated by
the quadrature rule with the collocation points used as
quadrature knots. Such fully discrete method combined with
the simplest rectangle �trapezium� integration rule works
well for shallow border profile gratings and, especially, at
small � /d.19,23,26

A possible function of the distance between collocation
points can be prescribed by equal steps along the axis per-
pendicular to the grooves.20 As pointed out in Ref. 18 and
what is valid for x-rays, in the case of regular kernels and
periodic integrand functions, a step function approximation
of the integrand expression, with division of the integration
interval �period� into equal parts, is preferable. In the pres-
ence of a profile with corners �piecewise linear�, the colloca-
tion and quadrature nodes are set in such a way that every
corner lies half-way between the nodes adjacent to it and no
curvature-like single-term corrections are added to Green’s
function normal derivatives.21 However, for deep groove cal-
culations another version of the quadrature formula involv-
ing the normal derivative of the Green’s functions can be
used. The nodes are set in such a way that all corners are
nodes and the curvature corrections are applied by adding the
corner term.20 For such diffraction structures better results
are often obtained using equidistant integration steps along
the arc length.13,15,21 A more efficient approach with meshes
of collocation points graded toward the corner points of the
profile curves together with the appropriated quadrature rule
is introduced in Ref. 12.

B. Evaluation of kernels

In spite of many research efforts �see, e.g., Refs. 34 and
35� and power of modern computers, computation of the
kernel functions remains a time- and accuracy-critical part of
integral methods for periodic structures, and especially for
� /d�1. To accelerate convergence of the series representing
kernels, different acceleration techniques are applied �cf.,
e.g., Ref. 12�. In the present approach, the peculiarity discov-
ered in Ref. 36 and described in Ref. 20 is used in the case of
shallow gratings and rough mirrors working at very small
� /d: “Introducing known speed-up terms in integral methods
produces an adverse numerical effect because of the ensuing
uncontrolled growth of coefficients in analytically improved

asymptotic estimations.” As shown further with all speed-up
options turned off, it is possible to obtain for the most diffi-
cult problems surprisingly rapid convergence, and an energy
balance very close to 1.

In Fig. 2, convergence of the present integral method is
demonstrated in respect to the main cut-off parameter N for
an analytically amenable case of x-ray diffraction from a
plane absorbing interface �grazing incidence in vacuum of
nonpolarized radiation to perfect Au surface prescribed by a
zero-depth sinusoidal profile� for �=1 nm, �=89°, and dif-
ferent � /d. The refractive indices of Au for all examples
were taken from Ref. 37. For � /d=1.E−2, the convergence
rate reached using speed-up techniques is high, with the re-
flected energy error of �4.9E−6 for the number of colloca-
tion points N=40 �the exact reflectance value is 0.7999�. For
� /d=1.E−3, the convergence rate reached with speed-up
techniques is medium, with the reflected energy error of
�1.E−3 for N=200. For � /d=1.E−4, the convergence rate,
again obtained with speed-up techniques, is low with the
reflected energy error of �6.2E−3 for N=1000. For � /d
=1.E−5, the convergence rate calculated with speed-up tech-
niques is very low, with the reflected energy error of
�7.7E−2 for N=2000. In contrast to the plots of Fig. 2, the
results for extremely low � /d of 1.E−7 obtained without
application of any speed-up techniques exhibit the fastest
convergence rate with a negligible reflected energy error of
�1.E−16 for N=2 only and are equivalent to analytical cal-
culations. The most important among the convergence
speed-up options which have to be switched off in this case
is the allowance for logarithmic singularity, and second im-
portant, is the correction applied to account for the cut-off
terms in the expansions of kernels �the Aitken’s �2 single-
term correction in our case�.38 Switching off the curvature
single-term correction is of a lower but not minor signifi-
cance on the way to reaching fast convergence. While the
results presented in Fig. 2 may certainly be different for vari-
ous realizations of integral methods and of speed-up tech-
niques used, the overall pattern remains the same. Such cal-
culations depend also significantly, as shown in Fig. 3 and
will be discussed further, on the actual summation rule cho-
sen for kernels.
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FIG. 2. �Color online� Reflected energy obtained by the MIM with speed-up
techniques for the problem of diffraction on a perfect Au interface of radia-
tion with �=1 nm incident at �=89° plotted vs N for different � /d.
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Shallow gratings with real �polygonal� groove profiles
and rough mirrors exhibit a very similar behavior for very
low � /d in x-ray–EUV. While at least one collocation point
per wavelength is required to reach efficiency convergence
for the usual integral methods, the MIM works reliably and
fast despite the very small number of collocation points per
wavelength used in the approach �it is also true for
echelles�.13,15,20 For example, if a period includes 100 collo-
cation points and � /d=1.E−5, there is only 1.E−3 point per
wavelength required for the MIM. In this case, however, the
profile depth and the incident radiation wavelength should be
of the same order of magnitude. The same rule for reaching
the maximum diffraction efficiency is, on the whole, valid
for longer wavelengths too.

C. Summation rule for kernel functions

The MIM described here specifies the number of posi-
tive and negative terms in Green’s functions and their normal
derivative expansions. In the simplest case typical of real
problems, the series are truncated symmetrically at the lower
summation index −P and the upper index +P, where P is an
integer defined by

P 
 gN . �21�

The truncation ratio g is optimized for small values of N
and is kept constant as N increases. It was found that P equal
to 50% of N is a reasonably good choice for most practical
computations and, in particular, for small � /d. The typical
dependence on P for the above example with � /d=1.E−3 is
shown in Fig. 3. For calculations with N=200 and speed-up
techniques the reflected energy is close to the exact value
with the error of 2.E−5 at g=1 /2, with some divergence
seen to set in at smaller and larger values of g. For calcula-
tions with N=50 without applying speed-up techniques the
reflected energy is equal to the exact value, again, at P
=0.5N, with some divergence seen to set in with smaller
number of terms.

While today this rule is no more than empirical, there
can be no doubt whatsoever that this choice is valid, and this
has been verified in many realistic examples during the re-

cent years. Note that in the integral method developed in
Ref. 18, g=2 /3 for the resonance domain and should be
varied for different � /d. It is worth noting that g=2 /3 is
worse than g=1 /2 because the computation time is propor-
tional to 2PN2. Significantly, P used in computations of ker-
nels should be restricted to be not larger than N, because
such series diverge for P�N �see Fig. 3 at a point
P=N�.18,21,22

Instead of the direct summation algorithm used in the
MIM, more sophisticated methods can be implemented to
accelerate the computation of integral kernels �cf., e.g., Ref.
29�. Unfortunately, it has turned out that such approaches are
not efficient for very small � /d.

One more important note regarding the energy balance
summation appears to be pertinent here. Kernels functions
tend to to become large when the y-component �m

� of the mth
diffraction order wave vector in the upper medium or/and in
the lower medium �for transmission gratings� tends to zero.
This means that the diffraction order becomes grazing or
even close to evanescent. Its efficiency may be high from the
physical point of view or/and diverge from the mathematical
point of view �it depends also on N�. It is well known from
diffraction theory that the efficiency of strictly grazing
propagating, as well as of all evanescent, orders is zero.
Moreover, various rigorous and approximate methods valid
for shallow gratings operating at small � /d, as well as all
experimental data suggest convincingly that the efficiency
decreases rapidly with increasing modulus of the diffraction
order number. As a rule, the efficiencies of such grazing or-
ders are very close to zero and much less than the error of
computations. Thus, such big efficiency values which corre-
spond to high grazing orders must be excluded from the
energy balance consideration.

D. Numerical implementation and validation

To reduce computing time for matrices of the discretized
operator equations, two enhancements at the algorithmic
level are used in the MIM: cache for the kernel functions and
cache for exponential functions �plane waves�. Both assume
a big time-memory trade-off at small � /d. The amount of
memory required for cache can be calculated in advance in
each case and adjustments �cache off or partial� are done
automatically. One can find the details of the cache imple-
mentation in Ref. 22.

To study the scattering intensity using a forward electro-
magnetic code and Monte Carlo simulation, one should first
of all generate statistical realizations of the boundary profiles
of the structure under investigation, then calculate the scat-
tering intensity for each realization and, finally, average the
intensities over all the realizations. The present author used a
spectral method33 to generate plane surfaces with a Gaussian
height distribution and a Gaussian correlation function with
the Hurst parameter H=1.39 To allow randomization of grat-
ing boundaries, this method was extended to include the case
of nonplane interfaces prescribed by arbitrary polygons.40

Nonplane boundaries are characteristic also of self-
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FIG. 3. �Color online� Reflected energy obtained by the MIM for the same
problem as in Fig. 2 and for � /d=0.001 vs g for different N and with or
without allowance for speed-up techniques.
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assembled low-dimensional quantum structures �e.g., quan-
tum dots �QDs�, quantum molecules, and whiskers� defined
by other asperity statistics.41

A few words regarding the extent to which the calcula-
tions made in extremely hard cases can be trusted are in
order here. The workability of the program has been con-
firmed by numerous tests usually employed in nonextreme
cases, more specifically, the reciprocity theorem, stabiliza-
tion of results under doubling of N and variation in g, com-
parison with analytically amenable cases of plane interfaces,
consideration of the inverse �nonphysical� radiation condi-
tion, use of different variants of collocation point distribution
and shifts, comparison with the results obtained by other
available codes or with published data, or with information
corresponded to the author by other researchers, including
results of measurements.

IV. SPECULAR X-RAY REFLECTANCES OF ROUGH
SURFACES

In this section, we are going to address the results of
numerical study of grazing-incidence specular reflection of
hard and soft x-rays from typical gold randomly rough mir-
rors with Gaussian roughness statistics. Readers interested in
grazing-incidence x-ray reflectometry of multilayer ran-
domly rough gratings and single- and multilayer quasiperi-
odical ensembles of In�Ga�As/GaAs and Ge/Si QDs per-
formed in the frame of the MIM including nonspecular
scattering are referred to Refs. 41–44.

A vacuum-Au surface model with the Gaussian rough-
ness height distribution and Gaussian correlation function for
use at grazing incidence near the angle of total external re-
flection was chosen as an example. The difference between
the rigorous and asymptotic approaches can be clearly seen
in the figures which plot the calculated specular TE reflec-
tances �TM reflectance data are close in magnitude� of Au
surfaces vs. the angle of incidence for different values of rms
roughness �, correlation length �, and �. For the BA �DW
corrections�,45,46 �=�, for the first-order DWBA �Ref. 39�
�NC corrections�,45 �=0, and for the rigorous model, chosen
� are close to the asymptotic values or have intermediate
values.

A comparison between the rigorous and approximate
models for Cu K�1 radiation ��=0.154 nm�, �=5 nm �the
rigorous model� and different � is shown in Figs. 4 and 5.
For �=0.15 nm �Fig. 4�, the results obtained for all the
models differ only by a few % within the angular range
studied. For �=1.5 nm in Fig. 5, the difference is about an
order of magnitude in the low reflectance range, and about a
few times in the intermediate range. Close to the critical
angle, this excess amounts to �10% compared with the fig-
ure derived from the DWBA. Such pronounced differences
may bring about an overestimation of � if it is deduced from
a comparison of experimental data with calculations.45 Sig-
nificantly, only 10–15 random asperities within d and about
as many statistical realizations turned out to be sufficient for
the average values of the reflectance in the examples of Figs.
4 and 5 to converge. N required to reach convergence and the
desired accuracy ��1.E−5� as estimated from the energy

balance was found to be 2000.41 Note that in the deep rough-
ness case, the convergence speed-up techniques were used.
The time taken up by one rigorous computation on a work-
station with two Quad-Core Intel® Xeon® 2.66 GHz proces-
sors, 8 MB L2 Cache, 1333 MHz FSB, and 16 GB RAM, is
�16 min when operating on Windows Vista® Ultimate 64-
bit and employing eightfold paralleling.

Figures 6 and 7 compare the approximate with rigorous
models for �=0.154 nm, �=1.5 nm and different �. The
reflectances calculated rigorously in the low-intensity do-
main in Fig. 6 for �=10 �m are approximately twice those
obtained with the BA. For �=0.1 �m, the excess is already
about fourfold. By contrast, close to the critical angle in Fig.
7 the rigorous data obtained for �=0.1 �m lie �20% below
the values calculated for this region with the DWBA. For �
=10 �m, in the region of high intensities, the differences are
still larger, to reach finally a few hundred percent. Such pro-
nounced differences may give rise not only to overestimation
of � but to a wrong assessment of � as well, if they are
deduced from a comparison of experimental with calculated
data.47 The behavior of the scattering intensity on � which is
illustrated graphically in Fig. 7 matches qualitatively with
the results obtained in the frame of the second-order DWBA
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FIG. 4. �Color online� Specular TE reflectances of Au surfaces with �
=0.15 nm and at �=0.154 nm plotted vs � for different calculation models
and �.
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and the Rayleigh method,48 while differing clearly in quan-
titative estimates, particularly for values of �, �, and k+ for
which these and similar approximations do not work.47–49

To account for the fine structure of irregularities in the
above example, one has to use �100 asperities per d, several
sample points per asperity, average over 9–25 random
boundaries and assume 400–3200 collocation points. For �
=10 �m and d=1500 �m, � /d
1.E−7, a value too small
to be dealt with in any known rigorous numerical approach.
For the MIM, however, this formidable scattering problem is
found to be convergent and yields quite accurate results �the
energy balance error is �1.E−6� for N=400 only and no
speed-up techniques invoked. The time taken up by one com-
putation on the above mentioned workstation is �40 s.

Figures 8 and 9 plot graphs similar to those presented
earlier but obtained for �=1.5 nm, �=1.5 nm and different
�. For the minimum �=1.5 nm, the rigorous results exceed
by a few times those derived from the BA for large grazing
angles, and are �10% larger than the ones extracted from the
DWBA close to the critical angle. For �=15 nm, the differ-
ences are smaller, and as the correlation length continues to
grow, rigorous calculations yield results which approach
throughout the angular range covered the values derived

from the BA, in full agreement with Ref. 48. In the examples
with �=1.5 nm, one has to take into account �50 asperities
per d, average over 9–25 random boundaries and use 200–
2400 collocation points. None of the known convergence
speed-up techniques was applied in this case too.

V. SUMMARY

The boundary integral equation method was considered
for the smallest � /d diffraction problems. To transform the
diffraction problem for the quasiperiodic 2D Helmholtz
equations in R2 to the single integral equation the boundary
integral operators were used. A few distinctive features of the
presented MIM and its implementation were pointed out.
The special attention was focused on the main peculiarities
of the MIM for � /d�1 as well as on a more general treat-
ment of the energy conservation law applicable to absorption
gratings and rough mirrors.

Calculations based on rigorous electromagnetic theory
were performed using the MIM, which turned out to provide
high accuracy and fast convergence for very large ratios of
the characteristic period and height to wavelength. The de-
veloped MIM gives exact results and works fast in the x-ray
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range at grazing incidence, the most difficult case for any
rigorous numerical code. Diffraction problems for bulk struc-
tures with arbitrary boundary profiles, including edges and
random asperities, are treated using the MIM. Rigorous ac-
count of roughness with Gaussian surface statistics has been
applied to x-ray specular reflectance of Au mirrors for differ-
ent rms roughnesses, correlation lengths, and wavelengths.

The accurate results obtained by the rigorous method for
intensities of x-ray scattering by rough mirrors may differ
substantially from those derived using known asymptotics
and approximate approaches. These differences may give
rise, for instance, to wrong estimates of rms roughness and
correlation length �slope angles� if they are determined by
comparing experimental data with calculations. Besides, the
rigorous approach permits taking into account any known
roughness statistics. The proposed approach to numerical
treatment of x-ray and neutron beam diffraction from rough
surfaces permits one to determine accurately the specular and
the diffuse components and can be extended to multilayer
cases as well.40,50
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APPENDIX: DERIVATION OF THE ABSORPTION
INTEGRAL

Because of the problem being invariant under translation
by an integer number of periods along the axis perpendicular
to the grooves, one may restrict oneself to an analysis of the

heat power loss ẼA per grating period. ẼA can be calculated
as the energy flux that has crossed the boundary � of the
grating structure through an element of area bounded by the
x=0, x=d, z=0, and z=1 planes:

ẼA = �
0

1

dz�
�

S−nds , �A1�

where S− is the time-averaged complex Poynting vector cal-
culated at the boundary, n is the unit vector of the normal
that is interior to the region under study, and arc length inte-
gration is performed along the cut of the boundary by the z
=0 plane.

Recalling that �S−�=0.5 Re E−
H− we open the vector
and dot products for the TE and TM polarizations under the
integral signs in Eq. �A1�

ẼA
s = 0.5 Re�

�

�Ez
−�Hx

− cos b − Hy
− cos a�ds� ,

ẼA
p = 0.5 Re�

�

Hz
−�Ex

− cos b − Ey
− cos a�ds . �A2�

As follows from Maxwell’s equations

�nEz
− = �− Hy

− cos a + Hx
− cos b�/i	�−,

�nHz
− = �− Ey

− cos a + Ex
− cos b�/i	�−. �A3�

Substituting Eqs. �A2� and �A3�, we obtain

ẼA
s = 0.5 Re�

�

1

i	�−�nEz
−Ez

−ds ,

ẼA
p = 0.5 Re�

�

1

i	�−�nHz
−Hz

−ds . �A4�

In studies of electromagnetic field losses at the grating, ẼA, it
should be normalized against the heat power losses of the
incident wave EA within a plane element of area bounded by
the same planes x=0, x=d, z=0, and z=1:

EA
s = 0.5 Re�

0

d 1

i	�−�nEz
iEz

idx ,

EA
p = 0.5 Re�

0

d 1

i	�−�nHz
iHz

idx . �A5�

Substituting now the explicit form of the incident field of
unit amplitude and of its normal derivative in Eq. �A5�, re-
calling the boundary conditions, and taking account of sim-
plifications in integration, we come to

EA
s = 0.5�d/	�+,

EA
p = 0.5�d/	�+. �A6�

Using Eq. �A4� in conjunction with Eq. �A6�, the normalized

expressions for ẼA, the electromagnetic field energy absorbed
in the grating, transform to

As =
ẼA

s

EA
s =

1

�d
Re�

�

i�+

�− �nEz
−Ez

−ds ,

Ap =
ẼA

p

EA
p =

1

�d
Re�

�

i�+

�− �nHz
−Hz

−ds . �A7�

Recalling that Re O=Im iO, Eq. �A7� can be recast using the
universal field component u+ and its normal derivative v+

A =
1

�d
Im�

�

u+v+ds . �A8�

Equation �A8� for the absorption A of an electromagnetic
field by a grating in classical diffraction is a particular case
of the expression presented in Ref. 29 for conical diffraction
and derived by applying the second Green’s identity to
boundary functions and performing the integration by parts.
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