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12.1 Introduction

This work is part of research that has been pursued by the authors over a long period of time
for the purpose of developing accurate and fast numerical algorithms, including the commercial
packages PCGrate and DiPoG [12.1, 12.2] designed to model multilayered gratings having
mostly one-dimensional periodicity (1D), including roughness, and working in all, including
the shortest, optical wavelength ranges at arbitrary optical mounts.

The boundary integral equation theory or, briefly, integral method (IM) is presently uni-
versally recognized as one of the most developed and flexible approaches to an accurate nu-
merical solution of diffraction grating problems (see, e.g., Ref. 12.3 and Ch. 4 and references
therein). Viewed in the historical context, this method was the first to offer a solution to vec-
tor problems of light diffraction by optical gratings and to demonstrate remarkable agreement
with experimental data. This should be attributed to the high accuracy and good convergence
of the method, especially for the TM polarization plane. It does not involve limitations similar
to those characteristic of the Coupled-Wave Analysis (CWA), and it provides a better conver-
gence. The disadvantages of this method include its being mathematically complicated, as
well as numerous "peculiarities" involved in numerical realization. In particular, quasi-periodic
Greens functions and their derivatives appearing as kernels in the integral operators require
sophisticated lattice sum techniques to evaluate. Moreover, application of the IM to cases of
heterogeneous or anisotropic media meets with difficulties; however, with the volume integral
method it is possible to overcome these difficulties easily. Nevertheless, it is on the basis of this
theory that all the well-known problems of diffraction by periodic and non-periodic structures
in optics and other fields have been solved. In many cases it offers the only possible way to
follow up in research. The flexibility and universality inherent in the IM, in particular, enable



12.2 Gratings: Theory and Numeric Applications, Second Edition, 2014

one rather easily to reduce the problem of radiation of Gaussian waves or of a localized source
to that of plane-wave incidence, for which scientists all over the world have a set of numerical
solutions. Generalizations of the IM have recently been proposed for arbitrarily profiled 1D
multilayer gratings [12.4], randomly-rough x-ray-extreme-ultraviolet (EUV) gratings and mir-
rors [12.5, 12.6], conical diffraction gratings including materials with a negative permittivity
and permeability (metamaterials) [12.7, 12.8], bi-periodic anisotropic structures using a vari-
ation formulation [12.9], Fresnel zone plates and diffraction optical elements [12.10, 12.11],
and two-dimensional (2D) [12.12, 12.13] and three-dimensional (3D) [12.14] photonic crystals
(inclusions) of some geometries, among others.

The IM is so pivotal that one can indicate the few areas where it can be modified and im-
proved to solve particular diffraction problems. By convention they are: (1) physical model—
choice of boundary types, boundary conditions, layer and substrate refractive indices, and ra-
diation conditions; (2) mathematical structure—integral representations using potentials or in-
tegral formulas and a multilayer scheme; (3) method of approximation and discretization—
discretization schemes, choice of basis (trial) and test (weighting) functions, and treatment of
coincident points and corners in boundary profile curves; (4) low-level details—calculations and
optimization of kernel functions, mesh of discretization (collocation) points, quadrature rules,
and solution of linear algebraic systems; (5) implementation enhancements—memory caching,
other implementation details. A self-consistent explanation of the existing IMs is beyond the
primary scope of the present study. The main purpose of this Chapter is to present a complete
description in general operator form of the two IMs applied to 1D multilayer gratings working
in conical diffraction mounts and in short waves. Our study also includes the calculus of grating
absorption in the explicit form and scattering intensity of randomly-rough gratings using Monte
Carlo simulations. For other formal IM treatments and their comparisons, one should rather
look to the references of this Chapter as well as to Ch. 4 and to references therein.

Various kinds of electromagnetic features of different nature can exist and be explored in
complex grating structures: Bragg and Brewster resonances, Rayleigh anomalies and groove
shape features, waveguiding and Fano-type modes, etc. In conical diffraction, the influence of
possible types of waves can be mixed. For the purposes of this Chapter, we chose three impor-
tant types, among many others, of diffraction grating problems to include them in Section 12.9
"Examples of numerical results". They are: bare dielectric or metallic gratings of standard
groove shapes working in conical diffraction in the resonance domain; shallow high-conductive
or dielectric gratings of various boundary shapes, including closed ones, working in different
mounts and supporting polariton-plasmon excitation or Bragg diffraction in the visible–infrared
range; bare and multilayer gratings working in grazing-conical or near-normal in-plane diffrac-
tion in the soft x-ray–EUV range.

12.2 Integral method for one-profile gratings in conical diffraction

The present IM designed for the calculation of the efficiency of bulk and multilayer gratings
with arbitrary boundary shapes including micro- and nanoroughness and over an extremely
wide wavelength range is considered here in a general operator formalism. In this Section, we
consider single-boundary integral equations, which involve boundary integrals of the single and
double layer potentials and also the normal and tangential derivatives of single layer potentials.
Analytical aspects of boundary integral operators are well represented in publications and, the
most relevant of them for the present study, are also in following Sections. The fields are
assumed time harmonic. Under these conditions, in classical (in-plane) diffraction the Maxwell
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system of equations reduces to a single Helmholtz equation; therefore fields are represented in
the sequel by scalar functions. They would be vector functions with two components in the case
of conical (off-plane) diffraction. In the present Section, we are concerned mostly with conical
diffraction, including some notes about metamaterials. Classical diffraction is considered as a
particular case with some important details for the implementation.

There exist different ways to transform the diffraction problems under consideration to
one-dimensional integral equations over the boundary profile curve of the grating. It is beyond
the scope of this chapter to describe the history of applying integral methods to grating prob-
lems and the variety of corresponding integral formulations. It should be mentioned that those
methods were mostly developed by specialists in physics and optics, and, it seems, they were
not aware of the rapid progress in the fields of "boundary integral equations" and "boundary
element methods" made in the mathematical community since 1980.

12.2.1 Maxwell equations

We denote by ex, ey and ez the unit vectors of the axis of the Cartesian coordinates. The grating is
a cylindrical surface whose generatrices are parallel to the z-axis (see Fig. 12.1) and whose cross
section is described by the curve Σ (Fig. 12.2). We suppose that Σ is not self-intersecting and d-
periodic in x-direction. The grating surface is the boundary between two regions G±×R⊂ R3

which are filled with materials of constant electric permittivity ε± and magnetic permeability
µ±. We deal only with time-harmonic fields; consequently, the electric and magnetic fields are

x
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Figure 12.1: Schematic conical diffraction by a grating.

represented by the complex vectors E and H, with a time dependence exp(−iωt) taken into ac-
count. The wave vector k+ of the incident wave in G+×R is in general not perpendicular to the
grooves (k+ · ez ̸= 0). Setting k+ = (α ,−β ,γ) the surface is illuminated by an electromagnetic
plane wave

Ei = p e i(αx−βy+γz) , Hi = s e i(αx−βy+γz) , (12.1)

which due to the periodicity of Σ is scattered into a finite number of plane waves in G+×R
and possibly in G−×R. The wave vectors of these outgoing modes lie on the surface of a cone
whose axis is parallel to the z–axis. Therefore, one speaks of conical diffraction.

The components of k+ satisfy

β ∈ R and α2 +β 2 + γ2 = ω2ε+µ+ .
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Figure 12.2: Cross section of a simple grating of period d with incidence direction kkk, incidence angle θ and
conical angle ϕ .

Note that this condition is satisfied by dielectric media with ε+ > 0,µ+ > 0 as well as negative
index materials, satisfying ε+ < 0,µ+ < 0. The wave vector k+ is expressed using the incidence
angles |θ |, |ϕ |< π/2

(α ,−β ,γ) = ω
√

ε+
√

µ+ (sinθ cosϕ ,−cosθ cosϕ ,sinϕ) .

Note that β > 0 if ε+ > 0,µ+ > 0, whereas β < 0 for negative index materials. In-plane diffrac-
tion corresponds to k+ · ez = 0, the case ϕ ̸= 0 characterizes conical diffraction.

12.2.2 Helmholtz equations

Since the geometry is invariant with respect to any translation parallel to the z-axis, we make
the ansatz for the total field

(E,H)(x,y,z) = (E,H)(x,y) e iγz (12.2)

with the vector functions E,H : R2 → C3. This transforms the time-harmonic Maxwell equa-
tions in R3

∇∇∇×E = iωµH and ∇∇∇×H =−iωεE , (12.3)

with piecewise constant functions ε(x,y) = ε±, µ(x,y) = µ± for (x,y) ∈ G±, into a two-dimen-
sional problem. Indeed, in regions with constant ε and µ we have the equations

∇γ ×E = iωµH , ∇γ ×H =−iωεE , ∇γ ·E = ∇γ ·H = 0 , (12.4)

with ∇γ = (∂x,∂y, iγ). Then from (12.3)

∇γ × (∇γ ×E) = ω2εµE , ∇γ × (∇γ ×H) = ω2εµH . (12.5)

Introducing the transverse components

ET = E −Ezez , HT = H −Hzez ,
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we derive using (12.4)

∇γ × (∇γ ×ET ) = γ2(ET +Ezez)+ iωµ∇× (Hzez)

∇γ × (∇γ ×HT ) = γ2(HT +Hzez)− iωε∇× (Ezez)

and

∇γ × (∇γ ×Ezez) = (iγ∂xEz, iγ∂yEz,−(∂ 2
x +∂ 2

y )Ez)

∇γ × (∇γ ×Hzez) = (iγ∂xHz, iγ∂yHz,−(∂ 2
x +∂ 2

y )Hz)

Thus, comparing the components in (12.4) we derive

(ω2εµ − γ2)ET = iγ∇Ez + iωµ∇× (Hzez) ,

(ω2εµ − γ2)HT = iγ∇Hz − iωε∇× (Ezez) .
(12.6)

We denote

κ2 = εµ − γ2

ω2 = εµ − ε+µ+ sin2 ϕ , (12.7)

and conclude from (12.6) that under the condition κ2 ̸= 0, which will be assumed throughout,
the components Ez,Hz determine the electromagnetic field (E,H).

Furthermore, comparing the third components we derive the relations

ω2εµEz = γ2Ez − (∂ 2
x +∂ 2

y )Ez , ω2εµHz = γ2Hz − (∂ 2
x +∂ 2

y )Hz ,

thus Ez and Hz are solutions of the two-dimensional Helmholtz equations in G±

∆u+ω2κ2u = 0 , (12.8)

where ∆ = ∂ 2
x +∂ 2

y denotes the Laplace operator in R2.
Denote by n = (nx,ny,0) and t = ez ×n = (−ny,nx,0), respectively, the unit vectors of

the normal and the tangent on the surface Γ = Σ×R. Then one finds from (12.6) that

n×E = n×ET −Ez t =
i

ω2κ2

(
γ n×∇Ez +ωµn× (∇× (Hzez))

)
−Ez t

and

n×H = n×HT −Hz t =
i

ω2κ2

(
γ n×∇Hz −ωεn×∇× (Ezez)

)
−Hz t

Thus the continuity of the tangential components n×E and n×H on the surface Γ = Σ×R
leads to the jump conditions for Ez,Hz across Σ of the form[

Ez
]

Σ =
[
Hz
]

Σ = 0 ,
[ γ

ω2κ2 ∂tHz +
ωε

ω2κ2 ∂nEz

]
Σ
=
[ γ

ω2κ2 ∂tEz −
ωµ

ω2κ2 ∂nHz

]
Σ
= 0 . (12.9)

Here ∂n = nx∂x + ny∂y and ∂t = −ny∂x + nx∂y are the normal and tangential derivatives on Σ,
respectively, and

[
u]Σ denotes the jump of the function u across the curve Γ.

The z-components of the incoming field

E i
z(x,y) = pz ei(αx−βy) , H i

z(x,y) = sz ei(αx−βy) (12.10)
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are α-quasi-periodic in x of period d, i.e., they satisfy a Floquet condition

u(x+d,y) = eidα u(x,y) .

In view of the periodicity of ε and µ this motivates to seek α-quasi-periodic solutions Ez, Hz.
Furthermore, the diffracted fields must remain bounded at infinity, which lead to the out-

going wave condition (OWC). If the profile curve Σ is contained in the strip {(x,y) : |y| < H},
then the quasiperiodicity of solutions implies outside the strip Rayleigh series expansion of the
form

(Ez,Hz)(x,y) = (E i
z,H

i
z)+ ∑

n∈Z
(E+

n ,H+
n )e i(αnx+β+

n y), y ≥ H,

(Ez,Hz)(x,y) = ∑
n∈Z

(E−
n ,H−

n )e i(αnx−β−
n y), y ≤−H,

(12.11)

with unknown Rayleigh coefficients E±
n ,H±

n ∈ C, and αn, β±
n given by the relations

αn = α +
2πn

d
, (β±

n )2 = ω2κ2
±−α2

n .

Then the functions are bounded for |y| → ∞, if we choose the branch of the square root such
that Imβ±

n ≥ 0, i. e. we set z1/2 = r1/2 exp(iφ/2) for z = r exp(iφ), 0 ≤ φ < 2π .
In the following it is always assumed that the material in G+ satisfies either ε+,µ+ > 0 or

ε+,µ+ < 0, and that the material parameters of the substrate are nonzero complex values with
nonnegative imaginary part Imε−, Im µ− ≥ 0. Thus, besides the usual optical materials also
interesting negative index materials with ε,µ < 0 are allowed.

If 0 ≤ argκ2
± < 2π , i.e. arg(ε±+ µ±) < 2π , then β±

n with 0 ≤ argβ±
n < π are properly

defined for all n. However, if arg(ε±+µ±) = 2π , i.e. ε±,µ± < 0, we set

κ± =−
(

ε±µ±− γ2

ω2

)1/2
, β±

n =−
(
ω2κ2

±−α2
n
)1/2 (12.12)

Summarizing, in case of off-plane diffraction the Maxwell system of equations reduces to
two-dimensional Helmholtz equations for vector functions of two components (Ez,Hz), which
satisfy the OWC (12.11) and are coupled by the jump conditions (12.9).

For in-plane diffraction (γ = 0) we derive from (12.9) the well-know fact, that one can
consider the two fundamental cases of polarization separately, i.e. the TE mode (with the z
component Ez of the electric field E parallel to the grating grooves) and the TM mode (with the
z component Hz of the magnetic field H parallel to the grating grooves) (see Ch. 2).

Then the surface is illuminated by an electromagnetic plane wave

Ei = p e i(αx−βy) , Hi = s e i(αx−βy) ,

where α = k+ sinθ , β = k+ cosθ , with the incidence angle |θ | < π/2, and k+ = ω2ε+µ+

denotes the wavenumber inside G+×R.
The z-components of the total fields Ez (TE polarization) or Hz (TM polarization) satisfy

the Helmholtz equation in G± except the boundary Σ

(∆+ k2
±)u± = 0 , k2

± = ω2ε±µ± (12.13)

and satisfy the continuity conditions

u+
∣∣
Σ = u−

∣∣
Σ = 0, ∂nu+

∣∣
Σ = q∂nu−

∣∣
Σ, (12.14)
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where q = µ−/µ+ or q = ε−/ε+ for the Ez- or Hz-component, respectively. In addition, they
are subject to OWC (12.11) with β±

n given by relations

β±
n =

√
k2
±−α2

n, 0 ≤ argβ±
n < π. (12.15)

Remark 12.2.1 The results of this section can be easily generalized to more general diffraction
gratings, where the outer domains G+ and G− are bounded by surfaces Σ+ and Σ−, surrounding
an inner periodic grating structure. For that structure the d-periodic in x material parameters
ε(x,y) and µ(x,y) are piecewise continuous functions. Then the z-components Ez and Hz satisfy
Helmholtz equations (12.8) with variable κ2 = ω2εµ , where ε(x,y) or µ(x,y) are continuous,
and meet the jump conditions (12.9) at any discontinuous curve of ε(x,y) or µ(x,y).

12.2.3 Boundary integral operators

Here we describe the application of some mathematical results on boundary integral equations
to the solution of the present Helmholtz problems in G±. Let the common boundary Σ of G−
and G+ be given by a piecewise C2 parametrization

σ(t) = (X(t),Y (t)), X(t +1) = X(t)+d, Y (t +1) = Y (t) , t ∈ R , (12.16)

i.e. the continuous functions X ,Y are piecewise C2 and σ(t1) ̸= σ(t2) if t1 ̸= t2. If the profile
Σ has corners, then we suppose additionally that the angles between adjacent tangents at the
corners are strictly between 0 and 2π .

The potentials which provide α-quasi-periodic solutions of the Helmholtz equation

∆u+ k2u = 0 with 0 ≤ argk2 < 2π (12.17)

are based on the quasi-periodic fundamental solution of period d

Ψk,α(P) = lim
N→∞

i
4

N

∑
n=−N

H(1)
0

(
k
√

(X −nd)2 +Y 2
)

eiαnd , P = (X ,Y ) , (12.18)

with the Hankel function of the first kind H(1)
0 . The series (12.18) converges uniformly over

compact sets in R2 \
∪

n∈Z
{(nd,0)} if the condition

k2 ̸= α2
n =

(
α +

2πn
d

)2
for all n ∈ Z (12.19)

is satisfied. At any point Q = (nd,0) the fundamental solution has a logarithmic singularity

Ψk,α(P−Q)≍ eiα(X−nd)−sin(X−nd))

2π
log

1
|P−Q|

for P = (X ,Y ) near Q. Moreover, setting βn =
√

k2 −α2
n (recall that Imβn ≥ 0) Poisson’s

summation formula leads to the representation

Ψk,α(P) = lim
N→∞

i
2d

N

∑
n=−N

e iαnX+iβn|Y |

βn
, (12.20)
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where in the case k < 0 according to (12.7) the fundamental solution is given by (12.20) with

βn =−
(
k2 −α2

n
)1/2.

The single and double layer potentials are defined by

S φ(P) = 2
∫

Γ
φ(Q)Ψk,α(P−Q)dσQ , Dφ(P) = 2

∫
Γ

φ(Q)∂n(Q)Ψk,α(P−Q)dσQ , (12.21)

where Γ is one period of the interface Σ, i.e. Γ = {σ(t) : t ∈ [t0, t0 +1]} for some t0. In (12.21)
dσQ denotes the integration with respect to the arc length and n(Q) is the normal to Σ at Q ∈ Σ
pointing into G−. Obviously, for α-quasiperiodic densities φ on Σ the potentials S φ , Dφ are
α-quasiperiodic in X and do not depend on the choice of Γ. They are solutions of the Helmholtz
equation (12.17) in G± and satisfy the radiation condition

u(x,y) =
∞

∑
n=−∞

un e iαnx+iβn|y| , |y| ≥ H . (12.22)

The potentials provide the usual representation formulas. Any α-quasiperiodic solution u
of (12.17) in G+ satisfying (12.22) admits the representation

1
2
(
S ∂nu−Du

)
=

{
u in G+,
0 in G−,

(12.23)

where the normal n points into G−. Under the same assumptions for a function u in G− the
representation

1
2
(
Du−S ∂nu

)
=

{
0 in G+,
u in G−,

(12.24)

is valid.
Restriction of the potentials S and D to the profile curve Σ are the so called boundary

integral operators. The potentials provide the usual jump relations of classical potential theory.
The single layer potential is continuous across Σ

(S φ)+(P) = (S φ)−(P) =V φ(P) , (12.25)

where the upper sign + resp. − denotes the limits of the potentials for points in G± tending in
non-tangential direction to P ∈ Σ, and V is a integral operator with logarithmic singularity

V φ(P) = 2
∫

Γ
Ψk,α(P−Q)φ(Q)dσQ , P ∈ Σ .

The double layer potential has a jump if crossing Γ:(
Dφ
)+

= (K − I)φ,
(
Dφ
)−

= (K + I)φ (12.26)

with the boundary double layer potential

Kφ(P) = 2
∫

Γ
φ(Q)∂n(Q)Ψk,α(P−Q)dσQ +(δ (P)−1)φ(P) .

Here δ (P)∈ (0,2), P ∈ Σ, denotes the ratio of the angle in G+ at P and π , i.e., δ (P) = 1 outside
corner points of Σ. The normal derivative of S φ at Σ exists outside corners and has the limits(

∂nS φ
)+

= (L+ I)φ,
(
∂nS φ

)−
= (L− I)φ , (12.27)
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where L is the integral operator on Γ with the kernel ∂n(P)Ψk,α(P−Q),

Lφ(P) = 2
∫

Γ
φ(Q)∂n(P)Ψk,α(P−Q)dσQ , P ∈ Σ . (12.28)

Boundary integral methods for second order partial differential equations usually employ also
normal derivatives of the double layer potential. The kernel function of this integral operator has
a strong singularity of the form |P−Q|−2 near Q = (nd,0), and must be interpreted as hyper-
singular or integro-differential operator. Since the computation of this kernel function is rather
complicated and time-consuming integral methods for diffraction gratings avoid this operator.
However, in the following we need also the tangential derivative of single layer potentials

∂t
(
V φ
)
(P) = 2∂t

∫
Γ

Ψk,α(P−Q)φ(Q)dσQ , P ∈ Σ .

Interchanging differentiation and integration leads to an integral kernel with the non-integrable
main singularity

t(P) · (P−Q)

|P−Q|2
,

where t(P) denotes the tangential vector to Σ at P. Therefore the tangential derivative of single
layer potentials cannot be expressed as a usual integral. But it can be interpreted as the Cauchy
principal value or singular integral

Jφ(P) = 2 lim
δ→0

∫
Γ\Γ(P,δ )

φ(Q)∂t(P)Ψk,α(P−Q)dσQ = ∂t
(
V φ
)
(P) , (12.29)

where Γ(P,δ ) is the subarc of Γ of length 2δ with the mid point P. Similarly, one can define
the singular integral

Hφ(P) = 2 lim
δ→0

∫
Γ\Γ(P,δ )

φ(Q)∂t(Q)Ψk,α(P−Q)dσQ , (12.30)

which by using integration by parts gives for α-quasiperiodic φ

Hφ(P) =−2
∫

Γ
Ψk,α(P−Q)∂tφ(Q)dσQ =−V

(
∂tφ
)
(P) , P ∈ Σ . (12.31)

Note that V ∂tV =V J =−HV .
The integral formulation for the diffraction problems can be derived from the so-called

direct or indirect approaches. The direct approach uses the representation formulas (12.23) or
(12.24) together with the boundary values (12.25) and (12.26) to derive the boundary integral
relations

V ∂nu+− (I +K)u+ = 0 or V ∂nu−+(I −K)u− = 0 (12.32)

for quasiperiodic solutions u± of the Helmholtz equations (12.17) in G± satisfying (12.22).
Here the unknowns u± and ∂nu± on the profile curve Γ have a direct physical meaning. For the
indirect approach, the solution is sought as single or double layer potential with some unknown
density.

An important ingredient for discussing the equivalence of integral formulations with the
electromagnetic problem is the so-called "Uniqueness Theorem", which looks for conditions
on Σ and the wave number k such that the solution of Helmholtz equation (12.17) in G+ or
G− with zero boundary value on Σ is identical to zero in that domain. The uniqueness of this
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Dirichlet problem is equivalent to the invertibility of the single layer potential operator V and is
guaranteed by two sufficient conditions

– Imk2 > 0;
– the profile curve Σ satisfies ny(Q)≤ 0 for all Q ∈ Σ.

Hence, only gratings with overhanging profiles are not covered by the last condition, but it is a
quite rare case that the Dirichlet problem with zero boundary data has a nontrivial solution. The
only known examples, constructed in Ref. 12.15, are boundaries Σ of very exotic form, which
will never appear in practice.

Therefore in the following we will always assume that the "Uniqueness Theorem" is valid.
Then any quasiperiodic solution of the Helmholtz equation (12.17) in G+ or G− satisfying the
OWC (12.22) can be uniquely determined via the representation formulas (12.23) or (12.24),
respectively, or can be written as single layer potential V φ with a quasiperiodic density φ , which
belongs to some Sobolev-type space of functions given on Γ.

12.2.4 Integral equations for the in-plane case

Let us discuss examples of integral formulations for the in-plane diffraction case. Denote the
z-components of the incident wave

ui =

{
E i

z for TE-polarization ,
H i

z for TM-polarization .

Then for bare (one-profile) gratings the problem (12.13) (12.14) (12.11) means that one has to
find a solution of

∆u±+ k2
±u± = 0 in G±, (12.33)

satisfying continuity conditions on Σ

u−|Σ = (u++ui)|Σ, ∂n(u++ui)
∣∣
Σ = q∂nu−

∣∣
Σ, (12.34)

and the outgoing wave condition

u+(x,y) =
∞

∑
n=−∞

c+n e i(αnx+β+
n y) for y ≥ H,

u−(x,y) =
∞

∑
n=−∞

c−n e i(αnx−β−
n y) for y ≤−H.

(12.35)

An example of the indirect approach is to look for densities φ+ and φ− on Γ such that

u+ = S +φ+ and u− = S −φ− (12.36)

satisfy (12.33-12.35), where S ± are the single layer potentials with the fundamental solution
Ψk±,α . From (12.34),(12.25) and (12.27) one derives two integral equations on Γ

V+φ+−V−φ− =−ui

(L++ I)φ+−q(L−− I)φ− =−∂nui (12.37)

Here L± are defined by (12.28) with the kernel ∂n(P)Ψk±,α(P−Q).
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The direct approach uses the relations

V+∂nu+− (I +K+)u+ = 0 , V−∂nu−+(I −K−)u− = 0 , (12.38)

following from (12.32), where the double layer potential K± has the kernel function ∂n(Q)Ψk±,α(P−
Q). The integral equation in Ch. 4.2.3 was derived by putting (12.34) in the second equation in
(12.38). Then one gets the system of integral equations

V+∂nu+− (I +K+)u+ = 0

q−1V−∂nu++(I −K−)u+ =−q−1V−∂nui − (I −K−)ui (12.39)

for the unknowns u+ and ∂nu+ as functions on Γ.
Another equation system with simpler right-hand side can be obtained by the direct

method if one assumes that ui is a solution of ∆u+ k2
+u = 0 in G− and satisfies there (12.35).

Hence, one gets additionally to (12.38)

V+∂nui +(I −K+)ui = 0 ,

leading to the relation

V+∂n(u++ui)− (I +K+)(u++ui) =−2ui . (12.40)

As before, (12.34) implies two integral equations, but now for the unknowns u− and ∂nu−

qV+∂nu−− (I +K+)u− =−2ui

V−∂nu−+(I −K−)u− = 0
(12.41)

Note that both the direct and indirect approach lead for TE- and TM-polarization to a sys-
tem of two linear integral equations with two unknowns. This is the standard approach in the
boundary integral method for solving so-called transmission problems. Much effort has been
spent in the theoretical and numerical analysis of different integral formulations and approxi-
mation methods for their effective solution.

It is popular in grating theory to combine the direct and indirect approaches, which results
in a single integral equation for each polarization. This idea goes back to D. Maystre, who
already in 1972 proposed this new approach (see Ch. 4). Take for example the representations

u+ = S +φ+ in G+ and u− =
1
2
(
D−u−−S −∂nu−

)
in G− .

Then by (12.34) and (12.27)

u− =V+φ++ui , ∂nu− = q−1((L++ I)φ++∂nui)
such that the second relation in (12.38) implies the integral equation(

q−1V−(I +L+)+(I −K−)V+
)
φ+ =−

(
q−1V−∂nui +(I −K−)ui) (12.42)

for one unknown density φ+.
Another way is to set

u+ =
1
2
(
S +∂nu+−D+u+

)
in G+ and u− = S −φ− in G− .
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In this case we derive from (12.34) and (12.27)

u++ui =V−φ− , ∂n(u++ui) = q(L−− I)φ− ,

such that (12.40) leads to the single integral equation(
qV+(I −L−)+(I +K+)V−)φ− = 2ui . (12.43)

We see that the combined direct-indirect approach can lead to single integral equations for
TE- and TM-problems on one-profile gratings. However, contrary to the pure direct or indirect
integral method the equations contain products or compositions of boundary integral operators,
which can lead to additional numerical difficulties.

12.2.5 Formulas for Rayleigh coefficients

After having solved one of the integral equation systems (12.37) or (12.41) or one of the sin-
gle equations (12.42) or (12.43) it is easy to determine the complex amplitudes c±n of the z-
components of the plane waves (12.35) reflected and transmitted by the grating—the so-called
Rayleigh coefficients. We note that the functions u±(X ,Y )e−iαX for fixed ±Y ≥ H, respec-
tively, are smooth and d-periodic. Then c±n e±iβ±

n Y is simply the n-th Fourier coefficient of
u±(X ,Y )e−iαX , i.e.

c±n =
e∓iβ±

n Y

d

∫ d

0
u±(X ,Y )e−iαX e−2πnX/d dX =

e∓iβ±
n Y

d

∫ d

0
u±(X ,Y )e−iαnX dX , ±Y ≥ H .

The indirect approach leads to simple formulas. Suppose u± = S ±φ±, with known den-
sity φ±. Then for (X ,Y ) = P

c±n =
e∓iβ±

n Y

d

∫ d

0
S ±φ±(P)e−iαnX dX

=
2e∓iβ±

n Y

d

∫
Γ

φ±(Q)dσQ

∫ d

0
e−iαnX Ψk±,α(P−Q)dX .

It follows from (12.20) immediately, that with Q = (x,y)∫ d

0
e−iαnX Ψk±,α(P−Q)dX =

i
2

e−iαnx+iβ±
n |Y−y|

β±
n

(12.44)

such that

c±n =
i

dβ±
n

∫
Γ

e−iαnx∓iβ±
n y φ±(Q)dσQ , where Q = (x,y) . (12.45)

Using the direct approach we find

u± =±1
2
(
S ±φ±−D±ψ±

)
with known functions φ±,ψ±. Then

c±n =±e∓iβ±
n Y

2d

∫ d

0

(
S ±φ±(P)−D±ψ±(P)

)
e−iαnX dX

=
e∓iβ±

n Y

d

∫
Γ

(
φ±(Q)−ψ±(Q)∂n(Q)

)∫ d

0
e−iαnX Ψk±,α(P−Q)dX dσQ .
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Hence from (12.44) we get

c±n =
i

2dβ±
n

∫
Γ

(
φ±(Q)−ψ±(Q)∂n

)
e−iαnx∓iβ±

n y dσQ . (12.46)

Let us apply formulas (12.45), (12.46) to the single integral equation (12.43). The Rayleigh
coefficients c−n can be determined from

c−n =
i

dβ−
n

∫
Γ

e−iαnx+iβ−
n y φ−(Q)dσQ , (12.47)

where Q = (x,y) and φ− is the solution of (12.43). For the reflected waves we get

c+n =
i

2dβ+
n

∫
Γ

((
q(L−− I)φ−−∂nui)−(V−φ−−ui)∂n

)
e−iαnx−iβ+

n y dσQ . (12.48)

12.2.6 Integral equations for the off-plane case

Now we describe the integral formulation of the conical diffraction (12.8), (12.49), (12.11) for
one-profile gratings. To give the same physical dimension to the functions, we use the vacuum
impedance Zv = (µv/εv)

1/2, where εv,µv denote the vacuum permittivity and permeability, re-
spectively, and introduce Bz = Zv Hz. Noting that γ = ω(ε+µ+)

1/2 sinϕ the jump conditions
(12.9) are rewritten in the form [

Ez
]

Σ =
[
Bz
]

Σ = 0 ,[ε ∂nEz

εvκ2

]
Σ
=−

√
ε+µ+

εvµv
sinϕ

[∂tBz

κ2

]
Σ
,
[µ ∂nBz

µvκ2

]
Σ
=

√
ε+µ+

εvµv
sinϕ

[∂tEz

κ2

]
Σ
.

(12.49)

Denoting the z-components of the total fields

Ez =

{
u++E i

z
u−

, Bz =

{
v++Bi

z in G+,
v− in G− ,

the problem (12.8), (12.49), (12.11) can be written so as to find solutions of

∆u±+ω2κ2
±u± = ∆v±+ω2κ2

±v± = 0 in G±, κ2
± = ε±µ±− ε+µ+ sin2 ϕ (12.50)

having on Σ the jumps

u− = u++E i
z,

ε− ∂nu−
εvκ2

−
−

ε+∂n(u++E i
z)

εvκ2
+

=

√
ε+µ+

εvµv
sinϕ

( 1
κ2
+

− 1
κ2
−

)
∂tv−,

v− = v++Bi
z,

µ−∂nv−
µvκ2

−
−

µ+∂n(v++Bi
z)

µvκ2
+

=−
√

ε+µ+

εvµv
sinϕ

( 1
κ2
+

− 1
κ2
−

)
∂tu−,

(12.51)

and satisfying the OWC

(u+,v+)(x,y) =
∞

∑
n=−∞

(E+
n ,B+

n )e i(αnx+β+
n y) for y ≥ H,

(u−,v−)(x,y) =
∞

∑
n=−∞

(E−
n ,B−

n )e i(αnx−β−
n y) for y ≤−H.

(12.52)
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In order to represent u± and v± as layer potentials we assume in what follows that the
parameters are such that β±

n = (ω2κ2
±−α2

n )
1/2 ̸= 0 for all n. Similar to the combined approach

of the previous Subsection 12.2.4 resulting in the very simple integral equation (12.43) the
solutions in G− are sought as single layer potentials

u− = S −w , v− = S −τ (12.53)

with certain auxiliary densities w,τ , whereas the solutions u+ and v+ are expressed using
(12.23), (12.24)

u+ =
1
2
(
S +∂nu+−D+u+

)
, v+ =

1
2
(
S +∂nv+−D+v+

)
in G+ . (12.54)

Here we denote by S ± the single layer potential defined on Γ with the fundamental solution
Ψωκ±,α . Correspondingly D± is the double layer potential over Γ with the normal derivative of
Ψωκ±,α as a kernel function. As in (12.40) we have

V+∂n(u++E i
z)−

(
I +K+

)
(u++E i

z) = 2E i
z|Σ ,

V+∂n(v++Bi
z)−

(
I +K+

)
(v++Bi

z) = 2Bi
z|Σ ,

(12.55)

where V± denote the boundary single layer potentials

V±φ(P) = 2
∫

Γ
φ(Q)Ψωκ±,α(P−Q)dσQ , P ∈ Σ ,

and the operators K± and L± are defined analogously. Since by Eq. (12.27)

u−|Σ =V−w, ∂nu−|Σ = (L−− I)w, v−|Σ =V−τ, ∂nv−|Σ = (L−− I)τ,

we see from Eqs. (12.55) that the jump conditions (12.51) are valid when the unknowns w,τ
satisfy the system of integral equations

ε−κ2
+

ε+κ2
−

V+(L−− I)w−
(
I +K+

)
V−w−

√
εvµ+

ε+µv
sinϕ

(
1−

κ2
+

κ2
−

)
V+∂tV−τ = 2E i

z,

µ−κ2
+

µ+κ2
−

V+(L−− I)τ −
(
I +K+

)
V−τ +

√
ε+µv

εvµ+
sinϕ

(
1−

κ2
+

κ2
−

)
V+∂tV−w = 2Bi

z.

(12.56)

Recall that we suppose κ2
± ̸= 0 and ω2κ2

±−α2
n ̸= 0 for all n.

For the analytical and numerical treatment of (12.56), it is advantageous to use the rela-
tions

V+∂tV− =−H+V− =V+J−

(see the definitions (12.29), (12.30)). Then (12.56) becomes a system of singular integral equa-
tions

ε−κ2
+

ε+κ2
−

V+(I −L−)w+(I +K+)V−w−
√

εvµ+

ε+µv
sinϕ

(
1−

κ2
+

κ2
−

)
H+V−τ =−2E i

z,

µ−κ2
+

µ+κ2
−

V+(I −L−)τ +(I +K+)V−τ +
√

ε+µv

εvµ+
sinϕ

(
1−

κ2
+

κ2
−

)
H+V−w =−2Bi

z.

(12.57)

for which powerful analytical and numerical methods exist.
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If the solution of the system (12.56) is found, then the solution of the conical diffraction
problem (12.50)–(12.52) can be determined by the relations

u+ =−1
2

(
S +

(ε−κ2
+

ε+κ2
−
(I −L−)w+

√
εvµ+

ε+µv
sinϕ

(
1−

κ2
+

κ2
−

)
J−τ +∂nE i

z

)
+D+V−(w−E i

z)
)
,

v+ =−1
2

(
S +

(µ−κ2
+

µ+κ2
−
(I −L−)τ −

√
ε+µv

εvµ+
sinϕ

(
1−

κ2
+

κ2
−

)
J−w+∂nBi

z

)
+D+V−(τ −Bi

z)
)
,

u− = S −w , v− = S −τ . (12.58)

A detailed mathematical analysis of the system (12.56) is given in Ref. 12.16. In particu-
lar, the following properties have been established:

1. The integral equations are equivalent to the Helmholtz system if the operators V+ and V−

are invertible.

2. If the profile Σ has no corners, then (12.56) is solvable if ε−+ ε+ ̸= 0 and µ−+µ+ ̸= 0.

3. If the profile Σ has corners, then (12.56) is solvable if ε−/ε+ and µ−/µ+ /∈ [−ρ ,−1/ρ ]
for some ρ > 1, depending on the angles at these corners.

4. The solution of (12.56) is unique if Imε− ≥ 0 and Im µ− ≥ 0 with Im(ε−+µ−)> 0

Remark 12.2.2 The one-boundary solver can be used effectively in multilayer grating prob-
lems with separating boundaries, i.e., the maximal y value of a given profile is strictly less than
the minimal y value of the next profile above (see Se. 12.5.1). In this case, it is possible to deter-
mine the diffracted field of the grating by computing scattering amplitude matrices separately
for any profile. For each interface between two different materials, the computation of the scat-
tering amplitude matrices corresponds to solving one-boundary conical diffraction problems
with plane waves illuminating the interface from above and below.

12.3 Efficiency, absorption, and energy balance

In this part, we give formulas for efficiencies and the absorption of bare gratings under oblique
incidences and discuss the energy balance.

12.3.1 Efficiencies in conical diffraction

Diffraction efficiencies or far field patterns for the reflected and transmitted fields can easily be
found from the corresponding Rayleigh coefficients of the diffracted outgoing waves. Defining
the “energy” as the flux of Poynting’s vector

P = Re(E×H)/2 (12.59)

through a normed rectangle parallel to the (x,z)-plane, the ratio of the energies of a reflected
or transmitted propagating mode and of the incident wave is defined as the efficiency of that
diffracted order. Thus, for a propagating plane wave (E,H)= (p,s) ei(kxx+kyy+kzz), k=(kx,ky,kz)
with |k|2 = ω2εµ , the energy is proportional to the y-component of Poynting’s vector

Py =
1
2

Re(pzsx − pxsz) .
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Since by (12.6)

px =− 1
|k|2 − k2

z

(
kxkz pz +ωµkysz

)
, sx =

1
|k|2 − k2

z

(
ωεky pz − kxkzsz

)
we obtain

Py =
ωky

2(|k|2 − k2
z )
(ε|pz|2 +µ|sz|2) =

ωεvky

2(|k|2 − k2
z )

( ε
εv
|pz|2 +

µ
µv

|qz|2
)

(12.60)

for (E,B) = (p,q) ei(kxx+kyy+kzz) with the modification B = (µv/εv)
1/2 H.

To find relations between the efficiencies in conical diffraction, let Ez,Bz be a solution
of the partial differential formulation of conical diffraction (12.8), (12.49) and (12.11). The
expression of the conservation of energy can be derived from a variational equality for Ez and
Bz in a periodic cell ΩH , which has in x-direction the width d, is bounded by the straight lines
{y =±H} and contains Γ. We multiply Eqs.

(∆+ω2κ2)Ez = (∆+ω2κ2)Bz = 0

in G±. respectively with
ε

εvκ2 Ez and
µ

µvκ2 Bz ,

and apply Green’s formula in the subdomains ΩH ∩G±. Then by using the quasi-periodicity of
Ez,Bz and the jump relations (12.49), one can derive

∫
ΩH

ε
εv

( 1
κ2 |∇Ez|2 −ω2 |Ez|2

)
+

√
ε+µ+

εvµv
sinϕ

( 1
κ2
+

− 1
κ2
−

)∫
Γ

∂tBz Ez

− ε+
εvκ2

+

∫
Γ(H)

∂nEz Ez −
ε−

εvκ2
−

∫
Γ(−H)

∂nEz Ez = 0 , (12.61)∫
ΩH

µ
µv

( 1
κ2 |∇Bz|2 −ω2 |Bz|2

)
−
√

ε+µ+

εvµv
sinϕ

( 1
κ2
+

− 1
κ2
−

)∫
Γ

∂tEz Bz

− µ+

µvκ2
+

∫
Γ(H)

∂nBz Bz −
µ−

µvκ2
−

∫
Γ(−H)

∂nBz Bz = 0 , (12.62)

where Γ(±H) denotes the upper and lower straight boundary of ΩH , respectively, and the nor-
mal n on Γ(±H) is directed outward. The outgoing wave condition (12.11) implies

∫
Γ(H)

∂nEz Ez = iβ
(
|E+

0 |2 −|pz|2 +2i Im
(
E+

0 pz e iβH ))+ i ∑
n ̸=0

β+
n |E+

n |2 e−2H Imβ+
n ,∫

Γ(−H)
∂nEz Ez = i ∑

n∈Z
β−

n |E−
n |2 e−2H Imβ−

n ,
(12.63)

and similar expressions for the boundary integrals involving Bz.
Note that ε+ and µ+ are nonzero real numbers, and let ε− and µ− also be real. Taking the
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imaginary part of Eqs. (12.61) and (12.62) one gets

ε+
εvκ2

+

β |pz|2 −
ε+

εvκ2
+

∑
β+

n >0

β+
n |E+

n |2 − ε−
εvκ2

−
∑

β−
n >0

β−
n |E−

n |2

=−
√

ε+µ+

εvµv
sinϕ

( 1
κ2
+

− 1
κ2
−

)
Im
∫

Γ
∂tBz Ez ,

µ+

µvκ2
+

β |qz|2 −
µ+

µvκ2
+

∑
β+

n >0

β+
n |B+

n |2 −
µ−

µvκ2
−

∑
β−

n >0

β−
n |B−

n |2

=

√
ε+µ+

εvµv
sinϕ

( 1
κ2
+

− 1
κ2
−

)
Im
∫

Γ
∂tEz Bz ,

which in view of
Im
∫

Γ
∂tBz Ez = Im

∫
Γ

∂tEz Bz

leads to

β
κ2
+

(ε+
εv

|pz|2 +
µ+

µv
|qz|2

)
= ∑

β+
n >0

β+
n

κ2
+

(ε+
εv

|E+
n |2 + µ+

µv
|B+

n |2
)
+ ∑

β−
n >0

β−
n

κ2
−

(ε−
εv

|E−
n |2 + µ−

µv
|B−

n |2
)
.

(12.64)

Comparing with (12.60), we see that (12.64) relates the energy of the incident wave, which is
proportional to the left side of (12.64) with the energies of the reflected and transmitted modes

β+
n

κ2
+

(ε+
εv

|E+
n |2 + µ+

µv
|B+

n |2
)

and
β−

n

κ2
−

(ε−
εv

|E−
n |2 + µ−

µv
|B−

n |2
)
, (12.65)

respectively. Thus, setting the energy of the incident wave

ε+
εv

|pz|2 +
µ+

µv
|qz|2 = 1 , (12.66)

from (12.64) we derive for lossless gratings that R+T = 1, where R denotes the sum of reflec-
tion order efficiencies

R = ∑
β+

n >0

β+
n
β

(ε+
εv

|E+
n |2 + µ+

µv
|B+

n |2
)
= ∑

β+
n >0

η+
n (12.67)

and T is the sum of transmission order efficiencies

T =
κ2
+

κ2
−

∑
β−

n >0

β−
n
β

(ε−
εv

|E−
n |2 + µ−

µv
|B−

n |2
)
= ∑

β+
n >0

η−
n . (12.68)

Here, the Rayleigh coefficients E±
n and B±

n can be derived using the formulas presented
in Section 12.2.5. For example, (12.45) and (12.58) in G− lead to

E−
n =

i
dβ−

n

∫
Γ

e−iαnx+iβ−
n y w(Q)dσQ , B−

n =
i

dβ−
n

∫
Γ

e−iαnx+iβ−
n y τ(Q)dσQ , (12.69)
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with (x,y) = Q ∈ Γ. Further, the direct integral representation in G+ implies

E+ =
1
2
(
S +φE −D+ψE

)
, B+ =

1
2
(
S +φB −D+ψB

)
,

with the known functions (cf. (12.58))

φE =−
(

ε−κ2
+

ε+κ2
−
(I −L−)w+

√
εvµ+

ε+µv
sinϕ

(
1−

κ2
+

κ2
−

)
J−τ +∂nE i

z

)
, ψE =V−(w−E i

z) .

φB =−
(

µ−κ2
+

µ+κ2
−
(I −L−)τ −

√
ε+µv

εvµ+
sinϕ

(
1−

κ2
+

κ2
−

)
J−w+∂nBi

z

)
, ψB =V−(τ −Bi

z) .

Thus, from (12.46)

E+
n =

i
2dβ+

n

∫
Γ

(
φE(Q)−ψE(Q)∂n

)
e−iαnx∓iβ±

n y dσQ ,

B+
n =

i
2dβ+

n

∫
Γ

(
φB(Q)−ψB(Q)∂n

)
e−iαnx∓iβ±

n y dσQ .
(12.70)

12.3.2 Generalization of energy balance for absorbing bare gratings

One of the most important accuracy criteria based on a single computation is the energy bal-
ance that can be generalized in the lossy bulk case described in this Subsection. If the grating
is perfectly conducting, then the conservation of energy is expressed by the standard energy
criterion

R = 1,

where R is the sum of the reflection order efficiencies.
If the grating is lossless, Imε− = 0 and Im µ− = 0, then conservation of energy is ex-

pressed by a similar energy criterion (see (12.67) and (12.68))

R+T = 1,

where T is the sum of the transmission order efficiencies.
In a general case, if Imε− ̸= 0 or Im µ− ̸= 0, then T = 0, R < 1, and the remaining part A

of the energy is absorbed in the substrate

A+R = 1. (12.71)

A is called the absorption coefficient or simply the absorption in the given diffraction problem.
Therefore, an important tool to check the quality of the numerical solution for absorbing grat-
ings is the requirement that the sum of the reflected energy and the absorption energy should be
equal to the energy of the incident wave. Besides being physically meaningful, the expression
(12.71) is very useful as one of numerical accuracy tests for computational codes and especially
important in the x-ray and EUV ranges, and also for plasmonics and metamaterials applications,
where absorption plays a predominant role. In the lossy case, one needs an independently cal-
culated quantity A to verify (12.71). For such a quantity, we use the absorption integral defined
in Ref. 12.7 and derived bellow.
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12.3.3 Absorption for bare gratings

To obtain an expression for the absorption energy we apply Green’s formula to Ez and Bz in the
domain ΩH ∩G+, which gives, since the normal n on Γ is exterior for ΩH ∩G+∫

ΩH∩G+

(
|∇Ez|2 −ω2κ2

+ |Ez|2
)
=
∫

Γ(H)
∂nEz Ez +

∫
Γ

∂nEz Ez ,∫
ΩH∩G+

(
|∇Bz|2 −ω2κ2

+ |Bz|2
)
=
∫

Γ(H)
∂nEz Ez +

∫
Γ

∂nEz Ez .
(12.72)

The outgoing wave condition (12.11) imply (12.63), such that

Im
∫

Γ(H)
∂nEz Ez =−β |pz|2 + ∑

β+
n ≥0

β+
n |E+

n |2 , Im
∫

Γ(H)
∂nBz Bz =−β |qz|2 + ∑

β+
n ≥0

β+
n |B+

n |2

Since κ+ is real, the imaginary parts on the left of Eqs. 12.72 vanish, and therefore

ε+
εv

|pz|2 +
µ+

µv
|qz|2 = ∑

β+
n ≥0

β+
n
β

(ε+
εv

|E+
n |2 + µ+

µv
|B+

n |2
)
+

ε+
εvβ

Im
∫

Γ
∂nEz Ez +

µ+

µvβ
Im
∫

Γ
∂nBz Bz .

Thus, setting as before in (12.66) the energy of the incident wave

ε0

εv
|pz|2 +

µ0

µv
|qz|2 = 1 ,

the sum of reflection order efficiencies R fulfils

R+
ε+
εvβ

Im
∫

Γ
∂nEz Ez +

µ+

µvβ
Im
∫

Γ
∂nBz Bz = 1 ,

i.e., we derive the conservation of energy for absorbing gratings R+A = 1 with the absorption

A =
ε+
εvβ

Im
∫

Γ
∂nEz Ez +

µ+

µvβ
Im
∫

Γ
∂nBz Bz . (12.73)

Note that ∂nEz = ∂+
n Ez and ∂nBz = ∂+

n Bz are the normal derivatives on Γ of the z-components
of the total fields in G+, i.e. the sum of the reflected and the incident fields. Using the jump
condition (12.51) the formula for A in the case of conical diffraction can be written in the form

A =
κ2
+

β
Im
(

1
κ2
−

(ε−
εv

∫
Γ

∂−
n Ez Ez +

µ−
µv

∫
Γ

∂−
n Bz Bz +2

√
ε+µ+

εvµv
sinϕ Re

∫
Γ

Ez ∂tBz

))
.

In terms of the solution w,τ of the integral equations (12.56) the absorption energy is given by
the formula

A =
κ2
+

β
Im
(

1
κ2
−

∫
Γ

(ε−
εv

(L−− I)wV−w+
µ−
µv

(L−− I)τ V−τ
))

+
2κ2

+ sinϕ
β

√
ε+µ+

εvµv
Im

1
κ2
−

Re
∫

Γ
V−wJ−τ .

(12.74)
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12.3.4 Efficiencies and absorption for in-plane diffraction

In the special case of in-plane diffraction (ϕ = 0) these formulas provide for lossless gratings
ε+
εv

|pz|2 +
µ+

µv
|qz|2

= ∑
β+

n >0

β+
n
β

(ε+
εv

|E+
n |2 + µ+

µv
|B+

n |2
)
+ ∑

β−
n >0

β−
n
β

(µ+

µ−

ε+
εv

|E−
n |2 + ε+

ε−
µ+

µv
|B−

n |2
)
,

(12.75)

and for absorbing gratings we derive the relation
ε+
εv

|pz|2 +
µ+

µv
|qz|2

= ∑
β+

n >0

β+
n
β

(ε+
εv

|E+
n |2 + µ+

µv
|B+

n |2
)
+

1
β

Im
(

µ+

µ−

ε+
εv

∫
Γ

∂nEz Ez +
ε+
ε−

µ+

µv

∫
Γ

∂nBz Bz

)
.

(12.76)

We get the well-known expressions for efficiencies η±
n and the heat absorption for TE and TM

polarizations

η+
n (T E) =

β+
n
β

|c+n (T E)|2

|E i
z|2

, η+
n (T M) =

β+
n
β

|c+n (T M)|2

|H i
z|2

,

η−
n (T E) =

µ+

µ−

β−
n
β

|c−n (T E)|2

|E i
z|2

, η−
n (T M) =

ε+
ε−

β+
n
β

|c−n (T M)|2

|H i
z|2

,

A(T E) =
1
β

Im
µ+

µ−

∫
Γ

∂nEz Ez , A(T M) =
1
β

Im
ε+
ε−

∫
Γ

∂nHz Hz .

12.4 Numerical solution of single-boundary problems

Progress in algorithms for numerical solutions of 2D and 3D Helmholtz equations in the last
two decades has been nearly comparable with that of computer hardware and experimental
nanophotonics. Note that some numerical methods, e.g. differential and CWA, but not integral,
inherently suffer from ill-conditionness as wavenumbers or order numbers increase. However,
algorithms that possess superior convergence properties are less universal with respect to a
scatterer geometry and not well-behaved in the high-frequency range. By these reasons, in the
present commercial and non-commercial codes based on the IMs, more classical and robust
approaches are mostly used, however with a few possible modifications proposed for low λ/d
ratio problems and described in Sec. 12.7.

In practice, the convergence and accuracy of efficiency computation using IMs depend
significantly on a proper choice of discretization schemes, quadrature rules, and summation
methods for the computation of integral kernels. In order to additionally reduce time (up to an
order for some problems) for computation matrices of the above operator equations algorithmic
enhancements can be applied to one-boundary solvers. It can be done by using, e.g., cache
for exponential functions (plane waves) and cache for kernel functions, as described in the
following.

12.4.1 Mathematical results for the integral equations

Here we point out some important mathematical aspects of the integral equations (12.42),
(12.43) or (12.57), which are the basis for the described IMs. From the theoretical point of
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view these equations are almost invertible as operators acting between different Sobolev spaces.
If the right-hand side of the integral equation has certain smoothness, say r, i.e. it belongs to
a Sobolev space Hr, then the solution has smoothness r − 1 and belongs to Hr−1. The cor-
rect choice of the Sobolev spaces and the parameter r is well understood; it depends on the
smoothness of the boundary profile.

Informally speaking, the equations correspond to linear operators of the form

(aI +bK)V +C

where V and K are single and double layer potentials with an arbitrary wavenumber including
k = 0, a and b are some constants, and C is compact in the pairs of Sobolev spaces Hr−1 → Hr.
The single layer potential V is always invertible as operator Hr−1 →Hr. If the profile is smooth,
then K is compact in Hr → Hr, hence the equations generate an operator

aV +C1 ,

which is invertible for almost all parameters in the pairs of Sobolev spaces for all r. Then any
results on single layer potentials equations and their approximate solution can be applied.

If the profile has corners, then V is bounded and invertible as operator Hr−1 → Hr for
0 ≤ r ≤ 1, K is not compact in Hr → Hr, but bounded in this range; hence one has to study
the above operator in the pairs of Sobolev spaces Hr−1 → Hr for 0 ≤ r ≤ 1. It is invertible
except a discrete number of parameter values and one must apply discretization results for both
V and for aI + bK. One serious problem arises that the solution is in general not in L2, it has
singularities of the form O(ρ−δ ), 0 < δ < 1, where ρ is the distance to the closest edge. Then
the solution is not finite at the corner points.

This and some other pure mathematical problems will not be discussed in this Chapter,
however they have great influence in practice and should be mentioned here. Concerning the
numerical solution of the integral equations (12.42), (12.43) or (12.57), one has to consider at
least three important theoretical problems:

1. The discretization of V,K,L,H and their products;

2. The convergence of the chosen numerical method under the condition that the kernel
functions are exact or computed with some tolerance;

3. The efficient computation of the kernel functions with given accuracy.

For many types of integral operators quite satisfactory solutions to these problems are
known, but not all of them have been applied to the diffraction integrals under consideration.

12.4.2 Approximation of integral equations

Here we describe briefly special Nyström and collocation methods used by the authors for
solving the equations (12.42), (12.43) or (12.57). In the described realizations, they are rather
simple but robust and universal methods with possibly a small number of kernel computations,
because this procedure is rather expensive for the diffraction integrals. The discretization of
the products of the integral operators appearing in these equations is done with the separate
discretization of the integrals

Ax(t) = υx(t)+
∫ 1

0
K(t,s)x(s)ds . (12.77)
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Here we use the parametrization (12.16). Neglecting the factor eiαX(t) the kernel K(t,s) and the
unknown function x(s) are periodic. The case υ =±1 corresponds to the integrals with K and
L, whereas υ = 0 for the integral operators with singular kernels V , H and J.

The Nyström discretization of A is based on a quadrature rule of the integral∫ 1

0
x(s)ds ≈

N

∑
j=1

w jx(t j) ,

where for periodic functions already the rectangular rule w j = q, t j = jq with q = 1/N provides
exponential convergence for smooth functions x. The solution {σk}N

k=1 of the linear system

υσk +q
N

∑
j=1

K(tk, t j)σ j = y(tk) , for all tk , k = 1, . . . ,N ,

is the Nyström approximate solution of the equation Ax(t) = y(t). If a solution of this dis-
crete problem exists and υ ̸= 0, the case of second order integral equations, then one gets an
approximate solution for all t by

υxN(t) = y(t)−q
N

∑
j=1

K(t, t j)σ j

and therefore xN(tk) = σk. The N ×N matrix

AN = ∥υδk j +qK(tk, t j)∥N
j,k=1

is the Nyström discretization of A. For each element of this matrix only one computation of the
kernel is necessary, and often some values can be reused. This discretization is accurate for the
diffraction integrals on smooth boundaries.

However, for integral operators of the first kind, υ = 0, the simple method is not appli-
cable, since the kernels of V , J and H are singular at the diagonal, i.e. the value of K(tk, tk) is
not defined. There exist various approaches to apply Nytröm’s method also to integral equa-
tions of the first kind; one of them is reported in Chapter 4. Another efficient realization was
developed in Ref. 12.17 to solve boundary integral equations with the single layer potential of
the Helmholtz equation, which can be easily adapted to our situation. Then again, only ∼ N2

computations of the kernel function are necessary and the accuracy of the modified Nyström
discretization is determined by the accuracy of the computations of the kernel functions.

The situation is worse for non-smooth profiles. Then the kernels of all integrals are not
differentiable at corner points and the solution of the integral equations is singular. Therefore,
the usual Nyström methods with the corners among mesh points make no sense, and there ex-
ist several proposals to modify or advance Nyström methods. For example, one can form a
modified smooth profile curve excluding small neighborhoods of the corner points and con-
struct the Nyström discretization for the integrals on the modified curve. Another practice is to
use graded mesh quadratures, that is, quadratures of various types which become increasingly
dense near corner points. Then the discretization of the integrals on profiles with corners via
the Nyström method can be made accurate; however, compared with the case of smooth pro-
files, the resulting matrices are excessively large and possibly very ill-conditioned, such that the
method can produce inaccurate results. There are various interesting attempts in the mathemat-
ical literature to address these difficulties (see Refs. 12.18–12.20). However, it was found that
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non-accounting (in respect to the usual approaches) of edge and a few other peculiarities of sin-
gular or low-convergent integral equations gives accurate and fast results for small wavelength-
and height-to-period ratio diffraction problems (see Sec. 12.7.)

To solve the integral equation Ax = y with a collocation method, one has to choose a set
of Ñ approximating functions {φ j} and N collocation points 0 ≤ t1 < t2 < .. . < tN < 1. The
approximate solution is sought in the form

xN(t) =
N

∑
j=1

a jφ j(t)

with the unknown coefficients a j to be determined from the collocation equations

AxN(tk) = y(tk) , for all tk.

Thus the collocation discretization of A is given by the N ×N-matrix

AN = ∥Aφ j(tk)∥N
j,k=1 .

The approximating functions should be periodic, therefore trigonometric polynomials, periodic
splines (piecewise polynomials) or wavelets are good candidates. For smooth profiles we use
N = 2Ñ +1 trigonometric monomials

φ j(t) = e2πi jt , j =−Ñ,−Ñ +1, . . . , Ñ −1, Ñ

for which the expressions Aφ j are cheap to compute. For example, the integrals with singular
kernel can be written as

V φ(t) =−
∫ 1

0
log(4sin2 π(t − s))φ(s)ds+

∫ 1

0
gV (t,s)φ(s)ds

Hφ(t) =
∫ 1

0
cotπ(t − s)φ(s)ds+

∫ 1

0
gH(t,s)φ(s)ds ,

where the functions gV ,gH are differentiable and periodic in t and s. Thus, the integrals with
these kernels can be accurately approximated with the Nyström discretization. For the main
parts, the relations

−
∫ 1

0
log(4sin2 π(t − s))φ j(s)ds =

{
φ j(t)/| j| , j ̸= 0 ,

0 , j = 0 ,∫ 1

0
cotπ(t − s)φ j(s)ds =

{
isign( j)φ j(t) , j ̸= 0 ,

0 , j = 0 ,

(12.78)

are used, resulting in only one computation of the kernel functions per element of the final col-
location matrix. This approach can also be used for profiles with corners, but the accuracy of
the trigonometric collocation deteriorates. This is caused by the poor Fourier series approxima-
tion of functions, which are singular at corner points. In this case, collocation with splines is
advantages, which are able to approximate singular functions on graded meshes. The drawback
of splines collocation is that similar to the Nyström discretization graded mesh quadratures are
needed to determine accurate collocation discretizations of the integrals. In Sec. 12.4.4 we
describe a combination of the trigonometric and spline collocation.
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12.4.3 Nyström discretization with modifications

We use the piecewise constant Nyström method (see Subsection before) with the matrix ele-
ments such as

AN = ∥υδki +qK(tk, ti)∥N
i,k=1 (12.79)

The present Nyström method proceeds by approximating the values of the current density func-
tion φ− of (12.43) at the quadrature nodes (X(ti),Y (ti)), i = 1,N; by solving the system

φ−(X(ti),Y (ti))+
N

∑
k=1

cikφ−(X(tk),Y (tk)) = b(X(ti),Y (ti)) , (X(ti),Y (ti)) ∈ Γ . (12.80)

of N linear equations in the N unknowns φ−(X(ti),Y (ti)) with composed coefficients cik con-
taining matrix elements of different operators.

For relatively shallow profiles, the nodes can be uniformly put along the x-coordinates.
But the approximately uniform distribution with respect to the arc-length using the parametriza-
tion (12.16) is more universal and makes it possible to treat, for example, the lamellar or any
other boundary profile with abrupt slopes or non-functions by the integral method without any
additional effort on the user side. The principal parameter, with respect to which the conver-
gence is evaluated, is the number N of discretization points on each boundary. In some codes
N may vary from one boundary to another, which can be useful. In the present study, let us dis-
card this option for simplicity. Quadratures for operators with continued kernels in our codes
are performed by the trapezium (= rectangle) integration rule.

The present numerical solution of the integral equations is based on a simple modifica-
tion of the Nyström discretization with piecewise constant weighting functions. The choice of
a discretization of integral equations such (12.80), PCGrate software default option for most
cases, requires a standard regularization of integrals. For smooth curves, the convergence or-
der is determined from the accuracy of computing the fundamental solution, which is N−3 if
only the first derivatives of the parametrization of the curve are used. The problem becomes
harder if the curve contains corners. Then the double layer potentials K and also potentials L
are not compact (the single layer potential is always compact in L2). So the usual Nyström
method is very problematic to treat corners; however some interesting modifications can be
found in Ref. 12.20, though they are only applicable to K and L. The treatment of the integral
kernels K(tk, ti) in (12.79) is connected with infinity for the single layer potential in the coincide
points, well behaved for the double layer potential on smooth curves, and discontinuous at cor-
ner points for the double layer potential. We use three types of single-term corrections: for the
single layer potential—taking into account their logarithmic singularities; for the double layer
potential—accounting for the profile curvature; and for various kernel functions—acceleration
terms applied to the truncated series. So, generally we do modifications in both diagonal and
non-diagonal matrix elements in respect to the standard Nyström matrices having N×N regular
coefficients.

The integral operators with a weak singularity in the diagonal terms can be split into a
sum

Vii = d−1
∫

Γ
ln |2sin[(P−Q)/2]|φ−dσQ +COii , (12.81)

where CO is a compact operator with continuous kernel. The first integral operator in (12.81)
can be calculated easily for some approximations of the current density function ϕ−. It is worth
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noting that a regularization can be used even at corner nodes of a non-smooth boundary. In the
presence of a profile with corners (piecewise linear), the sampling and quadrature nodes are set
in such a way that all corners are nodes and the curvature corrections are applied by adding
the corner term to the diagonal values. For calculations of shallow gratings having a lot of
uniformly-distributed edges (multi-polygonal), another version of the quadrature formula can
be applied: the nodes are set in such a way that every corner lies half-way between the nodes
adjacent to it and no curvature-like single-term corrections are added (see Sec. 12.7). However,
for calculations of deep grating having abrupt and/or long slopes such a simplified approach
does not work and a formula involving the normal derivative of the Green function should be
used.

The diagonal element of the discretization matrix corresponding to a corner point takes
the value (cf. Ref. 12.21, p. 120):

eii = (2N)−1(KL(ti)+KR(ti))+1/2−ζi/2π , (12.82)

where ζi is the exterior angle between adjacent tangents at the corner point P = (X(ti),Y (ti))
and (cf. Ch. 4, Eq. (4.92))

KL,R(ti) = y′(ti)

[
(2d)−1

∞

∑
n=−∞

αn/βn + iα0/2π

]
− y′′(ti)[(1+(y′(ti))2/4π] , (12.83)

where KL,R(ti)) means the left- and right-sided limits, respectively, of the kernel function value
at the corner point. For gratings with smooth boundaries, these corrections yield the overall
error estimate O(N−3) for diffraction amplitudes in both polarizations. However, the above
simple singularity accounting is insufficient to match such accuracy of the discretization near
the corners and a truncation rule together with some acceleration technique should be applied
to the truncated kernel function series. Therefore, in computations of kernels, we use a direct
summation approach with possible single-term corrections of corresponding matrix elements
(see Sec. 12.4.5.1).

The matrices of the discretized operators contain the values of the corresponding kernel
functions divided by the number N of segments between collocation points. We use in our
codes a few different algorithms for solving linear systems of algebraic equations. It can be
either the direct Gauss-Jordan elimination method (Gauss) or the non-direct Full orthogonaliza-
tion method (FOM) which is similar to the Generalized minimum residual method (GMRES).
For the FOM case, the number of iterations until a prescribed residual error is reached depends,
of course, on the refraction indices, the number of accounting diffraction modes, and the pro-
file shape, but it is nearly independent of the number of unknowns. Note that discretization
of the multi-boundary integral equations can be treated by the same simple manner without
modifications.

12.4.4 Hybrid trigonometric-spline collocation

Here we describe collocation methods for solving the integral equations (12.57) of conical
diffraction, which contain the singular integral H+. The collocation discretization requires
the computation of this integral for special basis functions, which is simpler than the Nyström
discretization, which uses point values of the strongly singular kernel function of H+.
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We consider a parametrization of Γ given by (12.16). In the case of a smooth profile Σ a
trigonometric collocation method is used, i.e. we use approximations

w(σ(t))e−iαX(t) |σ ′(t)| ≈ wN(t) =
Ñ

∑
k=−Ñ

ak e2πikt ,

τ(σ(t))e−iαX(t) |σ ′(t)| ≈ τN(t) =
Ñ

∑
k=−Ñ

bk e2πikt ,

(12.84)

where the coefficients {ak},{bk} are such that the system (12.56) is satisfied at the N = 2Ñ +1
collocation points tk = k/N, k = 1, . . . ,N.

The advantage of using trigonometric methods is that the integral operators V± and H+

with singular kernels can be approximated properly. For example, using the parametrization
σ(t) the single layer potential operator of w can be approximated by

V±w(σ(t))≈−eiαX(t)
(∫ 1

0
log(4sin2 π(t − s))wN(s)ds+

∫ 1

0
g±(t,s)wN(s)ds

)
,

and the singular integral J±w by

H+w(σ(t))≈−eiαX(t)
(∫ 1

0
cotπ(t − s)wN(s)ds+

∫ 1

0
j+(t,s)wN(s)ds

)
,

where the functions g±(t,s), j+(t,s) are differentiable and periodic in t and s. The action of
the integral operators with the kernels log(4sin2 π(t − s)) and cotπ(t − s) on trigonometric
polynomials is given analytically; compare (12.78). All other integrals have differentiable ker-
nels and they are approximated by the trapezoidal rule like in the Nyström method described
above. So the discretization error depends only on the error made in computing the functions
g±(t,s), j+(t,s) and the continuous kernels of K+ and L−, i.e. in computing the fundamental
solution and their derivatives. Here we use the exact Ewald method (cf. Section 12.4.5.2) with
a number of summation terms to ensure discretization errors of order N−3. Finally, the oper-
ator products V+L−, K+V− or H+V− are approximated by the products of the corresponding
discretization matrices.

If the profile curve has corners, then the convergence properties of methods with only
trigonometric trial functions deteriorate due to singularities of the densities w and τ of the form
O(ρ−δ ), 0 < δ < 1, where ρ is the distance to the closest edge. In boundary element methods
it is common to use piecewise polynomial trial functions on meshes graded towards corner
points. But due to the complicated form of their kernels the quadrature of the integral operators
acting on piecewise polynomials is very expensive. Therefore we use a modification of the
trigonometric collocation scheme with a fixed number of piecewise polynomial trial functions.

In the beginning, we introduce meshes of collocation points which contain the corners
and are graded towards the corner points. This can be derived by changing the parametrization
(12.16), for example, if σ(t j) is a corner point, then σ ′(t j) = σ ′′(t j) = 0 implies grading to-
wards the corner. Further, for each collocation point tk there exists a Lagrangian trigonometric
polynomial pk(t) of degree N such that

pk(t j) = δk j , k, j = 1, . . . ,N ,

where δk j is Kronecker’s delta. For each edge and a fixed number of collocation points tk
around it we replace the corresponding Lagrangian trigonometric polynomial pk(t) by a cubic
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spline sk(t) on the graded mesh with sk(t j) = δk j. Thus we get a hybrid trigonometric-spline
collocation method, which combines the efficient computation of the integrals for trigonomet-
ric polynomials with the good approximation properties of piecewise polynomials on graded
meshes near edges. The values at the collocation point t j of the integrals on the basis spline sk
are computed by a composite Gauss-quadrature with a quadrature mesh geometrically graded
towards t j and depending on the distance |σ(tk)−σ(t j)|. This leads to a fixed number of ad-
ditional calculations of the fundamental solutions Ψk±,α for each discretization level compared
with the pure trigonometric method, which is however compensated by a significant higher
accuracy.

12.4.5 Evaluations of kernels

In spite of many research efforts (see, e.g., Refs. 12.22–12.24)—computation of the kernels
remains a most time-critical part of integral method for periodic structures. Convergence of the
kernels deteriorates significantly as the distance between function’s arguments (a discretization
point or/and a quadrature node) tends to zero, and especially near edges and at high frequencies.
For more discussions we refer the reader to Ch. 4. Some "crash test" calculations on PCGrate
codes can be found in Ref. 12.25 and also in numerical examples of Sec. 12.9. The Ewald sum
method is quite intricate and widely used (see, e.g., Ch. 6). It is based on a separation of the
infinite sum into slowly and rapidly convergent parts and, then, a transformation of the slowly
convergent part using the Poisson formula and error functions. Although Ewald methods are
proven to be quite efficient for many diffraction grating problems, it has turned out to exhibit
poor numerical properties in short waves.

12.4.5.1 Direct kernel summation

In the described discretization method, we use a direct approach for the evaluation of kernel
functions based on Poisson’s summation formula (see (12.20)) and a special rule for various
kernels with positive and negative summation index. In the simplest case, the series is truncated
symmetrically at the lower summation index −P̃ and upper index P̃; where P̃ is an integer
defined by

P̃ ≈ gN. (12.85)

For many grating efficiency problems, the number of terms P̃ with plus or minus sign you
choose should be fifty percent of a number of discretization points N ("the golden rule" and
default value of PCGrate codes; for more see Sec. 12.5.7). In difficult cases like those of highly
conducting blazed or very deep gratings, echelles, grazing incidence, and, especially, for the
TM polarization one can try to optimize convergence and accuracy by varying g at a given
number of discretization points. This parameter can be optimized at small values of N and the
ratio is kept constant as N increases. Fortunately, it should be done only in very exceptional
cases.

As an easy remedy to accelerate convergence of the series representing the kernels, we
use the Aitken δ 2 method [12.26], which is a simple one-term improvement over a popular ac-
celeration technique described in Ch. 4. The precision of Aitken’s method for individual values
of the kernels, especially at close arguments, is inferior to that provided by the Kummer accel-
eration used in the IESMP code ([12.27]) or by the Euler-Knopp method [12.28], but one would
not benefit from extra accuracy in the end. Such more accurate acceleration techniques make
sense in combination with higher-order collocation or Galerkin methods. However, it is usually
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a difficult task to achieve an acceptable combination of robustness and wide-range applicabil-
ity with higher-order codes. In the Aitken method suppose series S = Σak has approximately
geometric convergence, then the sum

S̃K+1 = ∑
k≤K

ak +a2
K/(aK −aK+1) , (12.86)

is a better converged series than SK+1 having the same number of terms. Both versions of
discretization near corners together with the acceleration technique described above are found
to yield approximately the same convergence rate O(N−2+ε), where 0 < ε < 0.5 apparently
depends on boundary profile geometries.

Such a regularization of the weakly singular and singular integral operators, together with
an acceleration of the truncated kernel function series, theoretically and numerically leads to
higher rates of convergence and to bounded condition numbers of the discretization matrices.
Though, for discretization numbers N of practical interest, no advantage of regularization is
observed in our numerical experiments at very small λ/d ratios (see Sec. 12.7), even for smooth
boundaries.

12.4.5.2 Ewald’s method

It has turned out that acceleration techniques for the summation approach is not efficient if
the second argument y has small modulus |y| (cf. Ref. 12.22), which frequently occur in the
quadrature of integrals for graded meshes near corners or for thin layers, i.e., very close profile
curves. In this case one can use the following summation algorithm for the integral kernel which
is based on Ewald’s method (cf. Ref. 12.23), providing a good overview on various methods for
the computation of the fundamental solution.

The idea is to split the slowly converging series (12.20) into two quickly converging series.
To simplify of presentation we consider the infinite series

Ψ(x,y) =
i

4π ∑
n∈Z

einx+iβn|y|

βn
(12.87)

with βn :=
√

k2 −α2
n and αn := n+α and let Reβn, Imβn ≥ 0. Ψ(x,y) is 2π-periodic in x.

Ewald’s method is based on the relation

ieiβn|y|

βn
=
∫ a2

0
exp
(

β 2
n t− y2

4t

) dt√
πt

+
i

2βn

(
e−iyβn erfc

(
− iaβn+

y
2a

)
+eiyβn erfc

(
− iaβn −

y
2a

))
,

which is valid for any a > 0 and βn ̸= 0. Here

erfc(z) :=
2√
π

∫ ∞

z
e−t2

dt

is the complementary error function. Thus we have Ψ = Ψe +Ψw with the two sums

Ψe(x,y) =
1

4π ∑
n∈Z

einx
∫ a2

0
eβ 2

n t−y2/4t dt√
πt

, (12.88)

Ψw(x,y) =
i

8π ∑
n∈Z

einx

βn

(
e−iyβnerfc

(
− iaβn +

y
2a

)
+ eiyβnerfc

(
− iaβn −

y
2a

))
. (12.89)
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Since β 2
n = k2 −α2

n , the first sum (12.88) takes the form

Ψe(x,y) =
1

4π ∑
n∈Z

einx
∫ a2

0
e(k

2−α2
n )t−y2/4t dt√

πt
=

1
4π

∫ a2

0
ek2t−y2/4t ∑

n∈Z
e−α2

n teinx dt√
πt

.

Poisson’s summation formula gives

∑
n∈Z

e−(α+n)2teinx =

√
π
t

e−iαx−x2/4t ∑
m∈Z

e−π2m2/t eπmx/t e2πimα ,

which leads to

Ψe(x,y) =
e−iαx

4π ∑
m∈Z

e2πimα
∫ a2

0
ek2te−((x−2πm)2+y2)/4t dt

t
. (12.90)

Denoting r2
m := (x−2πm)2 + y2 and using the series expansion of ek2t yields∫ a2

0
ek2te−r2

m/4t dt
t
=

∞

∑
j=0

k2 j

j!

∫ a2

0
t j−1 e−r2

m/4t dt =
∞

∑
j=0

(ak)2 j

j!
E j+1

( r2
m

4a2

)
with the exponential integral function E j of degree j

E j(z) :=
∫ ∞

1

e−zt

t j dt .

Thus we obtain the representation

Ψe(x,y) =
e−iαx

4π ∑
m∈Z

e2πimα
∞

∑
j=0

(ak)2 j

j!
E j+1

( r2
m

4a2

)
. (12.91)

Since

E j+1(z)≤
e−z

z+ j
, z > 0 ,

the expression (12.91) for Ψe is quickly converging if (x,y) ̸= (2πm,0) with a speed of conver-
gence increasing as the parameter a gets smaller.

The function Ψw can be transformed to a computationally suitable form by using the
scaled complementary error function

w(z) := e−z2
erfc(−iz) = e−z2 2√

π

∫ ∞

−iz
e−t2

dt =
2√
π

∫ ∞

0
e−t2

e2izt dt , (12.92)

which has the properties

w(−z) = w(z) , w(−z) = 2e−z2
−w(z) , |w(z)| ≤ 1 for Imz ≥ 0 . (12.93)

Using
e∓iyβnerfc

(
− iaβn ±

y
2a

)
= ea2k2

e−a2α2
n e−y2/4a2

w
(

aβn ± i
y

2a

)
,

we can write (12.89) in the form

Ψw(x,y) =
i e−y2/4a2

ea2k2

8π ∑
n∈Z

einx e−a2α2
n

βn

(
w
(

aβn + i
y

2a

)
+w

(
aβn − i

y
2a

))
. (12.94)
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From (12.93) it can be seen that |w(z)|=O(e(Imz)2−(Rez)2
) if Imz<−|Rez|. To avoid numerical

overflow problems, which may occur if |y|/a is large, we use the relation

w
(

aβn − i
|y|
2a

)
= 2ey2/4a2

e−a2(k2−α2
n )ei|y|βn −w

(
−aβn + i

|y|
2a

)
(12.95)

obtained from (12.93), which gives

i e−y2/4a2
ea2k2

8π
e−a2α2

n

βn

(
w
(

aβn − i
|y|
2a

)
+w

(
−aβn + i

|y|
2a

))
=

i
4π

ei|y|βn

βn
.

Introducing the finite set P := {n ∈ Z : Imβn +Reβn < |y|/[2a2]}, the function Ψw is decom-
posed into an exponentially converging series and two finite sums

Ψw(x,y) =
i e−y2/4a2

ea2k2

8π

{
∑

n∈Z\P

einx e−a2α2
n

βn

(
w
(

aβn + i
y

2a

)
+w

(
aβn − i

y
2a

))

+ ∑
n∈P

einx e−a2α2
n

βn

(
w
(

aβn + i
|y|
2a

)
−w

(
−aβn + i

|y|
2a

))}
+

i
4π ∑

n∈P

einxei|y|βn

βn
.

(12.96)

In particular, in the case y = 0 which occurs frequently for binary gratings, we obtain the expo-
nentially converging series

Ψw(x,0) =
i ea2k2

4π ∑
n∈Z

einx e−a2α2
n

βn
w
(
aβn
)
.

Note that the speed of convergence of the series in (12.96) is increasing as the parameter a gets
larger.

The representation Ψ = Ψe +Ψw is also used for the computation of the gradient of Ψ

(∂x + iα)Ψ(x,y) =− 1
4π ∑

n∈Z

αneinx+iβn|y|

βn
, ∂yΨ(x,y) =− 1

4π ∑
n∈Z

sign(y)einx+iβn|y| ,

which is needed to compute the kernels of the operators K, L, J and H. Since ∂zE j(z) =
−E j−1(z) with E0(z) := e−z/z, the derivatives of Ψe are

(∂x + iα)Ψe(x,y) =−e−iαx

2π ∑
m∈Z

(x−2πm)e2πimα
(

e−r2
m/4a2

r2
m

+
∞

∑
j=1

(ak)2 j

4a2 j!
E j

( r2
m

4a2

))
,

∂yΨe(x,y) =−ye−iαx

2π ∑
m∈Z

e2πimα
(

e−r2
m/4a2

r2
m

+
∞

∑
j=1

(ak)2 j

4a2 j!
E j

( r2
m

4a2

))
.

(12.97)

The derivatives of Ψw are given by

(∂x + iα)Ψw(x,y) =−e−y2/4a2
ea2k2

8π

{
∑

n∈Z\P

αneinx e−a2α2
n

βn

(
w
(
aβn + i

y
2a

)
+w
(
aβn − i

y
2a

))

+ ∑
n∈P

αneinx e−a2α2
n

βn

(
w
(
aβn + i

|y|
2a

)
−w
(
−aβn + i

|y|
2a

))}
− 1

4π ∑
n∈P

αneinxei|y|βn

βn
,

(12.98)
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and

∂yΨw(x) =
e−y2/4a2

ea2k2

8π
sign(y)

{
∑

n∈Z\P
einx e−a2α2

n

(
w
(

aβn + i
|y|
2a

)
−w

(
aβn − i

|y|
2a

))

+ ∑
n∈P

einx e−a2α2
n

(
w
(

aβn + i
|y|
2a

)
+w

(
−aβn + i

|y|
2a

))}
− sign(y)

1
4π ∑

n∈P
einxei|y|βn ,

(12.99)

where we use the relation

∂y

(
e−y2/4a2

(
w
(

aβn + i
y

2a

)
+w

(
aβn − i

y
2a

)))

= iβne−y2/4a2
(

w
(

aβn − i
y

2a

)
−w

(
aβn + i

y
2a

))
.

The numerical calculation of the exponential integral E j and its derivatives and of the
scaled complementary error function w(z) present no problem using standard routines. The
value of the parameter a should be chosen small enough to ensure the rapid convergence of
the series for Ψe and its derivatives and large enough to ensure the rapid convergence of the
series representations for Ψw and its derivatives. After numerical tests we found that the choice
a|k|= 6 is a good compromise.

12.4.6 Cache for exponential functions (plane waves)

In order to reduce time for computation matrices of the above operator equations, a simple but
effective acceleration was implemented in authors’ codes at the algorithmic level, i.e. cache for
exponential functions (plane waves). It assumes a large time-memory tradeoff. The amount of
memory required for cache can be calculated in advance in each case and adjustments (cache
off or partial) are done automatically. More acceleration can be reached in some cases, e.g. if
one uses cache for kernel functions (see Sec. 12.6.2). Calculation of kernel functions makes
extensive use of typical multiplicative combinations of exponential functions

exp{iαn(Xi −Xk)+ iβn|Yi −Yk|}=

 E−
n,i/E+

n,k if Yi ≥ Yk;

E+
n,i/E−

n,k if Yi < Yk.
(12.100)

Here
E±

k,i = exp{iαnXi ± iβnYi}. (12.101)

Let N be the number of discretization points on a given boundary, that is, the subscripts i and k
in the above expressions assume N different values. Let P̃ be the number of exponential terms
to be stored in the cache. That is, the index n assumes P̃ values situated symmetrically (with a
possible ±1 imbalance) with respect to 0 (see (12.85)). Normally P̃ is the maximum number
of negative or positive exponential terms used in computations of kernel functions. If, however,
there is not enough fast memory in the system, a partial cache is used, where some exponents
are pre-computed and extracted form cache in the course of the kernel function computations,
while other exponents are evaluated on the spot.

In total, 2P̃N exponents are pre-computed for every boundary. The value of P may vary,
depending on which (if at all) acceleration method is used for the series summation for the
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kernel functions, however for many cases P̃ ≤ N . So, memory expenditure is again of the order
N2 per layer. The pre-computed exponents share the same memory for every layer, so newer
values override old ones. Unlike the kernel function cache (see Sec. 12.6.2), saving the pre-
computed exponents for a potential re-use in further layers with same refractive indexes does
not make much sense: pre-computation only needs O(N2) operations per layer, which is a tiny
fraction of the total, which is of the order N3.

Keeping track of the stored elements order this case does not call for any special technique
like as binary trees: a two-dimensional array is all one needs. However, a difficulty of another
sort pops up. The numbers βn have nonzero imaginary parts when |n| exceeds some n0, and
the asymptotics of Imβn is linear as |n| grows indefinitely. Depending on the signs of Yi in
Eq. (12.101), the exponents easily go beyond the underflow and overflow limits in the standard
floating-point arithmetic. However, the absolute values of resulting ratios (12.100) are always
not greater than 1.

To resolve this problem, the data {Ek,i} are stored in the format {mantissa, order}; see
Ref. 12.29. The order is represented by a variable of an integer type. It can be unusually
large (positive or negative) if one thinks about typical orders in engineering calculations. For
example, the values Imβn = 1000 and Yi = 10, though rather extreme, can occur in grating
calculations. But for the data structure we describe, numbers like exp(104) are nothing unusual
and totally within its capacity. In our program, the 2-byte C type short int is chosen for
orders, which suffices for all practical purposes.

We fix a huge positive B (the "base"); in the program B = 1020, a more or less arbitrary
value. Every nonzero real or complex number Q is then uniquely represented in the form

Q = Bq · M̃, 1 ≤ |M̃|< B (12.102)

with integer q. The only arithmetical operation needed for (12.100) is division Q/Q′ given that
|Q| ≤ |Q′|. Assuming Q′ = Bq′ ·M′, set

Q
Q′ =


M̃/M′, if q = q′,

(M̃/M′)B−1, if q = q′−1,

0, if q < q′−1.

(12.103)

The divisions on the right are carried out in the in standard floating-point format.

12.5 Solving diffraction of multilayer gratings

The use of coatings has many applications in diffraction gratings. We shall consider two al-
gorithms for conical diffraction by multilayer gratings based on the integral methods for one-
profile gratings, which are theoretically able to deal with multilayered gratings without limita-
tions concerning the shape of the interfaces or the conductivity of the layers. The choice of a
numerical method to solve the multi-boundary integral equations is to a large extent indepen-
dent of other implementation details of the single-boundary algorithm. It is not even necessary
to use the same method for every boundary, provided that adjacent boundary solvers have a
common data interface. In the hope of making the algorithm more accessible, we explicitly
write out a chain of operator equations to emphasize the upper-level structure of the multilayer
algorithms. Details which are not pertinent to the structural level are omitted here, but are well
discussed in other Sections and Appendices. Assuming the potential operators are available
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as ready-to-use building blocks, an object-oriented implementation of the operator equations
becomes relatively easy.

Our description of the multilayer schemes below emphasizes its structural aspects from
the perspective of an object-oriented implementation. There are two different multilayer solvers
implemented in the authors’ codes: the ’Separating’ multi-boundary solver based on the scatter-
ing amplitude matrix algorithm described in Appendix A and the ’Penetrating’ multi-boundary
solver based on recursive marching algorithms described in Appendix B. The first one is re-
stricted to multilayer gratings with horizontally separated boundary profiles, where it is possible
to define a plane layer in between that does not cross the upper or the lower interface. Then one
can use plane-wave Rayleigh expansions of the electromagnetic field between the interfaces and
work with the scattering matrices for that interface. The second algorithm works in the case of
interpenetations of interfaces, but is numerically more expensive than the first one.

Mathematical aspects of multi-boundary integral operators are nontrivial, however well
represented in this Chapter and many publications. For example, transparent and detailed ex-
position, including a discussion of various marching schemes that avoid hypersingular potential
operators, is given in Ref. 12.21.

12.5.1 Gratings with separating boundaries

Let us now consider a multilayer diffraction grating with period d formed by a stack of M relief
and/or rod gratings characterized by grating profiles Σ j, j = 0, . . . ,M−1.
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Figure 12.3: Cross section of a multilayer grating with inclusions and separating boundaries.

More precisely, the structure consists of material layers which are separated by continuous
profiles and may contain rod gratings. The different media are numbered from top to bottom;
see Figure 12.3, G0 and GM are the semi-infinite top and bottom layers. To apply a scattering
matrix approach, we assume that the interfaces Σ0, . . . ,ΣM−1 between the M+1 homogeneous
material domains G0, . . . ,GM are separated, i.e. between adjacent interfaces Σ j and Σ j−1 there
exists a strip {u j < y < d j−1} not crossing the interfaces. The structure of the multi-profile
grating is characterized by the permittivity and permeability functions ε(x,y) and µ(x,y), which
are constant on the domains G j. Its values in G0 and GM are denoted by ε0, εM and µ0, µM,
respectively. Further we denote

κ2
0 = ε0µ0 cos2 ϕ , κ2

M = εMµM − ε0µ0 sin2 ϕ .
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As in the case of one interface, the z-components Ez, Bz = (µv/εv)
1/2 Hz satisfy Helmholtz

equations (
∆+ω2κ2)Ez =

(
∆+ω2κ2)Bz = 0 (12.104)

κ2 = εµ − ε0µ0 sin2 ϕ , in the domains G j and the transmission conditions at the interfaces Σ j[
Ez
]

Σ =
[
Bz
]

Σ = 0 ,[ε ∂nEz

εvκ2

]
Σ
=−

√
ε0µ0

εvµv
sinϕ

[∂tBz

κ2

]
Σ
,
[µ ∂nBz

µvκ2

]
Σ
=

√
ε0µ0

εvµv
sinϕ

[∂tEz

κ2

]
Σ
.

(12.105)

The light is incident from G0 and we are interested in the Rayleigh coefficients E±
n ,B±

n of the
series expansions

(Ez,Bz)(x,y) = (E i
z,B

i
z)+ ∑

n∈Z
(E+

n ,B+
n )e i(αnx+β (0)

n y), y ≥ H,

(Ez,Bz)(x,y) = ∑
n∈Z

(E−
n ,B−

n )e i(αnx−β (M)
n y), y ≤−H,

(12.106)

where the half spaces {y ≥ H} and {y ≤−H} are contained in the semi-infinite layers G0 and
GM, respectively. According to (12.7) we have β ( j)

n = (ω2κ2
j −α2

n )
1/2 if 0 ≤ arg(ε j +µ j)< 2π

and β ( j)
n =−

(
ω2κ2

j −α2
n
)1/2 if ε j,µ j < 0.

We study the off-plane diffraction for gratings with separated interfaces using the robust
algorithm (for the derivation, see App. A) for modeling layered gratings (an overview is given,
for example, in Ref. 12.30). The present method extends the S-matrix algorithm given by D.
Maystre in Ref. 12.31 for the integral method and in-plane diffraction. It is a recursive algorithm
to determine operators R0 and T0, which map the coefficients (pz,qz) of the incoming plane
wave (E i

z,B
i
z) = (pz,qz)e i(αx−βy) to the vectors of Rayleigh coefficients {(E+

n ,B+
n )}n∈Z of the

reflected and {(E−
n ,B−

n )}n∈Z of the transmitted fields, cf. (12.11). To this end, the multi-profile
problem is split into simpler scattering problems for one-profile gratings, which are formed by
the profiles Σ j and separate optical materials with the parameters ε j,µ j and ε j+1,µ j+1.

We give a formal operator description of the marching procedure for R0 and T0. For each
profile there exist scattering operators, which map the Rayleigh coefficients of an incoming field
to the Rayleigh coefficients of the reflected and transmitted fields. More precisely, the grating
with profile Σ j diffracts the α-quasi-periodic incoming field

∑
n∈Z

(A j
n,C

j
n)eiαnx−iβ ( j)

n y

in the reflected and transmitted fields

∑
n∈Z

(B j
n,D

j
n)eiαnx+iβ ( j)

n y resp. ∑
n∈Z

(A j
n ,C

j
n )eiαnx−iβ ( j+1)

n y) .

This is a linear operation between infinite vectors of the Rayleigh coefficients written as

{(B j
n,D

j
n)}n∈Z = r j{(A j

n,C
j
n)}n∈Z , {(A j

n ,C
j

n )}n∈Z = t j{(A j
n,C

j
n)}n∈Z
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with the linear reflection and transmission operators r j and t j, respectively. Similarly, the re-
flection and transmission operators r′j, t′j for illumination from below map the coefficient vector

{(B j
n,D

j
n)} of the α-quasiperiodic incoming field

∑
n∈Z

(B j
n,D

j
n)eiαnx+iβ ( j+1)

n y

to the coefficient vectors of the reflected and transmitted fields

∑
n∈Z

(A j
n ,C

j
n )eiαnx−iβ ( j+1)

n y) resp. ∑
n∈Z

(B j
n,D

j
n)eiαnx+iβ ( j)

n y .

i.e. {(A j
n ,C

j
n )}n∈Z = r′j{(B

j
n,D

j
n)}n∈Z and {(B j

n,D
j
n)}n∈Z = t′j{(B

j
n,D

j
n)}n∈Z.

Further, we assign to each profile Σ j an y-coordinate y j, for example y j =Y j(0) for a given
parametrisation (X j(t),Yj(t)) of the profile Σ j, and define a diagonal operator γγγ j which maps a
vector of pairs {(an,bn)}n∈Z to the vector

{(an,b j)eiβ ( j)
n (y j−1−y j)}n∈Z = γγγ j{(an,bn)}n∈Z

If we introduce the infinite vector AAA0 of the coefficients of the input wave

AAA0 = {δn0(pz,qz)}n∈Z ,

then R0 and T0 are derived by the following marching procedure:

Set RM−1 = rM−1 , TM−1 = tM−1 ;

Compute for j = M−1, . . . ,1 R j−1 = r j−1 + t′j−1γγγ jR j
(
I− γγγ jr′j−1γγγ jR j

)−1γγγ jt j−1 ;

T j−1 = T j
(
I− γγγ jr′j−1γγγ jR j

)−1γγγ jt j−1 ;

Determine finally {(E+
n ,B+

n )}n∈Z = R0AAA0 , {(E−
n ,B−

n )}n∈Z = T0AAA0.

12.5.2 Determination of the scattering matrices

For the application of the marching algorithm, one has to find finite-dimensional approxima-
tions of the scattering operators, i.e., scattering matrices, again denoted by r j, t j and r′j, t′j, for
given j = 0, . . . ,M −1. This means one-profile grating problems must be solved with incident
waves from above and below for the profile Σ j. More precisely, one has to find the Rayleigh
coefficients of the diffracted fields for input waves with z-components(

u+δ
v+δ

)
=

(
1−δ

δ

)
eiαnx−iβ ( j)

n y ,

(
u−δ
v−δ

)
=

(
1−δ

δ

)
eiαnx+iβ ( j+1)

n y , δ = 0,1 . (12.107)

The choice of the indices n will be described in Sec. 12.6.1.
First, we consider the calculation of the scattering matrices for a continuous interface Σ j.

It separates two layers and the one-profile problem corresponds to the situation depicted in Fig-
ure 12.2. We denote the semi-infinite domains above and below the profile Σ = {(x,y− y j) :
(x,y) ∈ Σ j} by G± and by ε±, µ± the material coefficients above and below Σ, respectively.
Thus, we keep the notation of Sec. 12.2.2, but the difference to the problem there is the oc-
currence of different incident waves from above and below and the fixed values ε0 and µ0 in
condition (12.105).
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For illumination from above, one has to solve the following problem:
Setting

Ez =

{
u++u+δ in G+ ,

u− in G− ,
Bz(x,y) =

{
v++ v+δ in G+,

v− in G−,

find α-quasi-periodic solutions of the Helmholtz equations

in G+ ∆u++ω2κ2
+u+ = ∆v++ω2κ2

+v+ = 0 , (12.108)

in G− ∆u−+ω2κ2
−u− = ∆v−+ω2κ2

−v− = 0 , (12.109)

where now κ2
± = ε±µ±− ε0µ0 sin2 ϕ . From equation (12.105) one gets the jump conditions on

Σ

u− = u++u+δ ,
ε− ∂nu−

εvκ2
−

−
ε+∂n(u++u+δ )

εvκ2
+

=

√
ε0µ0

εvµv
sinϕ

( 1
κ2
+

− 1
κ2
−

)
∂tv− ,

v− = v++ v+δ ,
µ−∂nv−

µvκ2
−

−
µ+∂n(v++ v+δ )

µvκ2
+

=−
√

ε0µ0

εvµv
sinϕ

( 1
κ2
+

− 1
κ2
−

)
∂tu− .

(12.110)

For illumination from below, we set

Ez =

{
u+ in G+ ,

u−+u−δ in G− ,
Bz =

{
v+ in G+,

v−+ v−δ in G−.

The α-quasi-periodic functions u±,v± have to satisfy the Helmholtz equations (12.108), (12.109)
and the transmission conditions

u−+u−δ = u+ ,
ε−∂n(u−+u−δ )

εvκ2
−

− ε+ ∂nu+
εvκ2

+

=

√
ε0µ0

εvµv
sinϕ

( 1
κ2
+

− 1
κ2
−

)
∂tv+ ,

v−+ v−δ = v+ ,
µ−∂n(v−+ v−δ )

µvκ2
−

− µ+∂nv+
µvκ2

+

=−
√

ε0µ0

εvµv
sinϕ

( 1
κ2
+

− 1
κ2
−

)
∂tu+ .

(12.111)

Choosing as before u−,v− as single layer potentials (12.53), we derive from equations (12.110)
and (12.111) the system of singular integral equations(ε−κ2

+

ε+κ2
−

V+(I −L−)+(I +K+)V−
)

w−
√

εv

µv

√ε0µ0

ε+
sinϕ

(
1−

κ2
+

κ2
−

)
H+V−τ =U ,

(µ−κ2
+

µ+κ2
−

V+(I −L−)+(I +K+)V−
)

τ +
√

µv

εv

√ε0µ0

µ+
sinϕ

(
1−

κ2
+

κ2
−

)
H+V−w =V ,

(12.112)

where the singular integral H+ is defined by (12.30) with the fundamental solution Ψωκ+,α . For
illumination from above, the right-hand side is given by

U =−2u+δ , V =−2v+δ ,

whereas in the case of illumination from below

U =
ε−κ2

+

ε+κ2
−

V+∂nu−δ − (I +K+)u−δ +

√
εv

µv

√ε0µ0

ε+
sinϕ

(
1−

κ2
+

κ2
−

)
H+v−δ ,

V =
µ−κ2

+

µ+κ2
−

V+∂nv−δ − (I +K+)v−δ −
√

µv

εv

√ε0µ0

µ+
sinϕ

(
1−

κ2
+

κ2
−

)
H+u−δ .
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In the case of a rod grating with a discontinuous profile, the domain G− is bounded.
Using the single layer potential ansatz in G−, illumination from above is treated as before.
Illumination from below can be treated by setting

Ez =

{
u++u−δ in G+ ,

u− in G− ,
Bz =

{
v++ v−δ in G+,

v− in G−,

which results in the system (12.112) with the right-hand side

U =−2u−δ , V =−2v−δ .

Thus, in all considered cases the system (12.112) can be used to determine the scattering ma-
trices. Moreover, it can be shown that the solvability of system (12.112) does not depend on ε0
and µ0. Similar to the system (12.56), the equations are solvable if the ratios ε−/ε+ and µ−/µ+

do not belong to an interval on the negative axis. Thus, the applicability of the algorithm is
independent of the incidence angles θ and ϕ as well as of the polarization.

12.5.3 Gratings with penetrating boundaries

In the following, we suppose that the interfaces Σ j are given by piecewise C2 parametrizations

σ j(t) = (X j(t),Y j(t)), X j(t +1) = X j(t)+d, Y j(t +1) = Yj(t) , t ∈ R , (12.113)

i.e., the functions X j,Y j are piecewise C2 with

|σ ′
j(t)|=

√
(X ′

j(t))2 +(Y ′
j(t))2 > 0 .

Moreover, the interfaces do not intersect, i.e. σ j(t1) = σk(t2) only if j = k and t1− t2 = dn. Ad-
ditionally, we suppose that if a curve Σ j has corners, then the angles between adjacent tangents
at the corners are strictly between 0 and 2π .

GM−1

G
2 G1

G0

GM

E iy

xd

. . . . .

n

ΣM−1

ΣM−2

Σ2

1Σ

0Σ

Figure 12.4: Cross section of a multilayer grating with penetrating boundaries.

To derive an integral formulation we rewrite the conical diffraction problem (12.8), (12.49),
(12.11) using the notation

Ez(x,y) =
{

u0 +E i
z

u j
, Bz(x,y) =

{
v0 +Bi

z in G0,
v j in G j , j = 1, . . . ,GM ,
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with E i
z = pz ei(αx−βy), Bi

z = qz ei(αx−βy). We seek α-quasiperiodic functions {u j,v j}N
j=0 such

that

in G j ∆u j +ω2κ2
j u j = ∆v j +ω2κ2

j v j = 0 , (12.114)

subject to the transmission conditions

on Σ0


u1 = u0 +E i

z ,
ε1 ∂nu1

εvκ2
1

−
ε0∂n(u0 +E i

z)

εvκ2
0

=

√
ε0µ0

εvµv
sinϕ

( 1
κ2

0
− 1

κ2
1

)
∂tv1 ,

v1 = v0 +Bi
z ,

µ1∂nv1

µvκ2
1

−
µ0∂n(v0 +Bi

z)

µvκ2
0

=−
√

ε0µ0

εvµv
sinϕ

( 1
κ2

0
− 1

κ2
1

)
∂tu1 ,

(12.115)

and, for j = 1, . . . ,M−1,

on Σ j


u j+1 = u j ,

ε j+1∂nu j+1

εvκ2
j+1

−
ε j ∂nu j

εvκ2
j

=

√
ε0µ0

εvµv
sinϕ

( 1
κ2

j
− 1

κ2
j+1

)
∂tv j+1 ,

v j+1 = v j ,
µ j+1∂nv j+1

µvκ2
j+1

−
µ j∂nv j

µvκ2
j

=−
√

ε0µ0

εvµv
sinϕ

( 1
κ2

j
− 1

κ2
j+1

)
∂tu j+1 ,

(12.116)

which satisfy the outgoing wave condition

(u0,v0)(x,y) =
∞

∑
n=−∞

(E(0)
n ,B(0)

n )e i(αnx+β (0)
n y) for y > max

(x,t)∈Σ0
t ,

(uM,vM)(x,y) =
∞

∑
n=−∞

(E(M)
n ,B(M)

n )e i(αnx−β (M)
n y) for y < min

(x,t)∈ΣM
t .

(12.117)

The single and double layer potentials on one period Γ j = {σ j(t) : t ∈ [t0, t0 + 1]} of the
interface Σ j corresponding to κm are denoted by

SΓ j,mφ(P) = 2
∫

Γ j

Ψm,α(P−Q)φ(Q)dσQ , DΓ j,mφ(P) = 2
∫

Γ j

φ(Q)∂n(Q)Ψm,α(P−Q) dσQ ,

with the α-quasiperiodic fundamental solution Ψm,α = Ψωκm,α .
We present a recursive algorithm for solving (12.114 - 12.117), which in each step treats

a problem for one of the interfaces and therefore allows us to solve conical diffraction problems
for gratings with an arbitrary number of layers on standard PCs (for the derivation, see App. B).
The algorithm extends a method for in-plane diffraction, i.e., ϕ = 0, which was proposed by
D. Maystre in Ref. 12.32 and described in detail in Ref. 12.4.

The starting point is to seek the solutions {u j,v j}M
j=0 of (12.114–12.117) in the form

u0 =
1
2
(
SΓ0,0∂nu0 −DΓ0,0u0

)
, v0 =

1
2
(
SΓ0,0∂nv0 −DΓ0,0v0

)
, in G0 , (12.118)

u j =
1
2
(
SΓ j, j∂nu j −DΓ j, ju j

)
+SΓ j−1, jφ j−1 ,

v j =
1
2
(
SΓ j, j∂nv j −DΓ j, jv j

)
+SΓ j−1, jψ j−1 ,

 in G j , j = 1, . . . ,M−1 (12.119)

uM = SΓM−1,MφM−1 , vM = SΓM−1,MψM−1 , in GM , (12.120)
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with certain densities φ j,ψ j, j = 0, . . . ,M−1. Again, the Helmholtz equations (12.50) and the
outgoing wave condition (12.52) are satisfied. Note that the representations (12.118 - 12.120)
are unique, provided that the single layer potential operators V ( j)

j−1 j−1 are invertible for j =
1, . . . ,M, which will be assumed throughout.

The algorithm determines recursive relations(
φ j

ψ j

)
= Q j−1

(
φ j−1

ψ j−1

)
, j = 1, . . . ,M−1, (12.121)

such that the functions {u j,v j}M
j=0 fulfill the remaining transmission conditions (12.115) and

(12.116). The initial densities (φ0,ψ0) and the 2×2 operator matrices {Q j−1} are obtained by
the following scheme:

Introduce the coefficients

a j =
ε j+1κ2

j

ε jκ2
j+1

, b j =
µ j+1κ2

j

µ jκ2
j+1

,

c j =

√
εv

µv

√ε0µ0

ε+
sinϕ

(
1−

κ2
j

κ2
j+1

)
, d j =

√
µv

εv

√ε0µ0

µ+
sinϕ

(
1−

κ2
j

κ2
j+1

)
,

(12.122)

and determine Q j−1 by a backward recurrence for j = M−1, . . . ,1 as a solution of the operator
equation((

I +K( j)
j j −c jH

( j)
j j

d jH
( j)
j j I +K( j)

j j

)
A j −

(
a jV

( j)
j j 0

0 b jV
( j)
j j

)
B j

)
Q j−1 = 2

(
V ( j)

j j−1 0

0 V ( j)
j j−1

)
. (12.123)

The initial values are

AM−1 =

(
V (M)

M−1M−1 0
0 V (M)

M−1M−1

)
, BM−1 =

(
L(M)

M−1M−1 − I 0
0 L(M)

M−1M−1 − I

)
, (12.124)

and the subsequent terms in (12.123) are derived by

A j−1 =

(
V ( j)

j−1 j−1 0

0 V ( j)
j−1 j−1

)

− 1
2

((
K( j)

j−1 j −c jH
( j)
j−1 j

d jH
( j)
j−1 j K( j)

j−1 j

)
A j −

(
a jV

( j)
j−1 j 0

0 b jV
( j)
j−1 j

)
B j

)
Q j−1 , (12.125)

B j−1 =

(
V ( j)

j−1 j−1 0

0 V ( j)
j−1 j−1

)−1(
I +K( j)

j−1 j−1 0

0 I +K( j)
j−1 j−1

)
A j−1 −2

(
I 0
0 I

)
.

(12.126)

Having found A0 and B0, the initial value (φ0,ψ0) of (12.121) is a solution of the linear equa-
tion ((

I +K(0)
00 −c0H(0)

00

d0H(0)
00 I +K(0)

00

)
A0 −

(
a0V (0)

00 0
0 b0V (0)

00

)
B0

)(
φ0

ψ0

)
=−2

(
E i

z
Bi

z

)
. (12.127)
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Then the solution above the grating is given by the integrals

u0 =−1
2

(
a0 SΓ0,0

(
I −L(1)

00
)
φ0 +DΓ0,0V (1)

00 φ0 + c0SΓ0,0J(1)00 ψ0

)
,

v0 =−1
2

(
b0 SΓ0,0

(
I −L(1)

00
)
ψ0 +DΓ0,0V (1)

00 ψ0 −d0 SΓ0,0J(1)00 φ0

)
.

If desired, the field below the grating is found from the integrals

uM = SΓM−1,MφM−1 , vM = SΓM−1,MψM−1 .

with the densities φM−1,ψM−1 determined using the recursive relations (12.121).

12.5.4 Generalization of energy balance for lossy multilayer gratings

Resonance and non-resonance anomalies, differing in their nature, can be effectively explored
in high- and low- conductive gratings, such as: surface plasmon excitations, Brewster and Bragg
conditions, Rayleigh orders, groove shape and waveguide features, etc. Because of the s and
p modes in conical diffraction being coupled through the boundary conditions, the associated
problems are more general, and gratings can act as perfect absorbers and local- or/and surface-
field enhancers at any incidence polarization state.

Knowledge of the accurate value of the absorption for a grating is very important for
testing the correctness and reliability of developed programs. The energy balance is one of the
basic accuracy criteria based on a single computation and it is generalized here in the case of
lossy multilayer gratings. In this Subsection we derive important formulas for direct calculus
of the absorption of multi-boundary gratings working in general conical mounts. Diffraction
efficiencies for the reflected and transmitted orders in conical diffraction can easily be found
from the corresponding Raleigh coefficients or boundary values, see (12.67)–(12.70).

If the multi-boundary grating is perfectly conducting, then for respective refractive indices
ν2

j = ε jµ j, ImνM = ∞, and if there is no energy absorption in the grating layers, Imν j = v j = 0,
j = 1, . . . ,M−1, then the energy conservation law is expressed by the standard energy criterion
(see Ch. 2) under unitary normalization conditions

R = 1,

where R is the reflected energy.
If the grating is lossless, Imν j = 0, j = 0, . . . ,M, then the energy conservation law is

expressed by a similar energy criterion

R+T = 1,

where T is the transmitted energy.
If Imν j > 0 for some j = 1, . . . ,M−1 and ImνM = 0, then energy is absorbed in grating

layers. Thus, the usual law of the energy conservation that the sum of efficiencies of all reflected
and transmitted orders should be equal to the power of the incident wave, does not hold. In a
general case,

A+R+T = 1, (12.128)

where (see (12.157))

A =
1
β

Im
∫

Γ0

(ε0

εv
∂nEz Ez +

µ0

µvβ
∂nBz Bz

)
−

κ2
0

βκ2
M

Im
∫

ΓM−1

(εM

εv
∂nEz Ez +

µM

µv
∂nBz Bz

)
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is called the absorption coefficient or simply the absorption in the given multilayer diffraction
problem. If also ImνM > 0, then T = 0 and it holds

A+R = 1 (12.129)

with the absorption (12.156)

A =
1
β

Im
∫

Γ0

(ε0

εv
∂nEz Ez +

µ0

µv
∂nBz Bz

)
.

The requirements (12.128), (12.129) are convenient single computation tools to check the qual-
ity of the numerical solution. Besides being physically meaningful, expression (12.157) is very
useful as one of numerical accuracy tests for computational codes and especially important for
x-ray–EUV gratings, photonic crystals, metamaterials, and perfect absorbers where absorption
plays a predominant role. In the lossy multilayer case, one needs an independently calculated
quantity A to verify (12.128). For such a quantity, we use the absorption integrals defined in
Ref. 12.33 and derived in Appendix C using the second Green formula and integration by parts.

The expressions derived from the boundary integral equation theory are important for cal-
culating the absorption of general multi-boundary gratings working in any diffraction mount at
any polarization state. The boundary absorption integrals developed and tested have been found
to be an accurate and universal tool for calculating of the energy balance of various periodical
structures having separated or penetrating boundaries. The results of absorption calculus of a
bare metallic grating with shallow grooves, photonic crystal supporting polariton-plasmon ex-
citation and x-ray-grazing-conical-diffraction multilayer grating are demonstrated in Sec. 12.9.

Remark 12.5.1 A generalization of the energy balance presented for a multilayer absorption
grating in classical and conical diffraction is based on computations of the respective absorp-
tion integrals by values of the field and its derivatives on a boundary. It has not only intuitive
significance but the same rigor, namely in the sense of generalized functions or distributions,
and way to deduce as more simple energy criterions for perfectly conducting and lossless grat-
ings (see in Ch. 2). A derivation of expressions considered for finding the absorption quantity A
as well as the interpretation of the results obtained bear only on Maxwell’s equations or Green’s
theorem and boundary conditions. The computation of A itself is not connected with a specific
rigorous method which is used for near-zone field calculus. Thus, the present in-plane and
off-plane energy balance generalizations for multilayer absorbing gratings can be considered
as much universal and useful as well known energy conservation laws for perfectly conducting
and lossless gratings.

12.6 Implementation and algorithmic enhancements of multilayer solvers

To handle effectively various grating types, the different multilayer schemes can be used to
solve respective diffraction problems, i.e. Penetrating or Separating solvers. The Penetrating
solver described above is more general, since it allows the y-projections of the boundaries to be
overlapping that is vital in the modeling of many coated gratings. However, when the grating
boundary profiles are strictly separated, the problem (12.104)–(12.106) can be treated using
certain robust algorithms for modeling layered gratings. Therefore, the Separating solver based
on the S-matrix multilayer algorithm can be, for particular problems, several times faster and
more accurate than the Penetrating one.
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There are three basic sources of numerical errors arising from an integral equation im-
plementation: (i) replacement of an integral equation by a finite system of linear algebraic
equations; (ii) inexact evaluation of matrix elements; (iii) inaccuracy of solution of the lin-
ear system. For errors of type i, in many cases a priori estimations via functional-analytic
and operator-theoretical methods are available, which, at least, can moderate one’s optimistic
expectations about the overall convergence rate. Combinations of moments, Galerkin, colloca-
tion, and fully discrete methods with balanced convergence properties are known as numerical
schemes of discretization [12.22]. Errors of type ii in these methods are commonly attributed
to numerical quadratures. In periodic diffraction problems, in contrast to diffraction on a com-
pact obstacle, there is one more source of ii-type numerical errors: evaluation of lattice Green
functions and their derivatives. The problem is seen from the well-known kernel functions
representation described above. This is the most difficult error type arising from solving of
grating-like diffraction problems and particularly at small λ/d ratios. Errors of type iii, as well
as direct round-off errors, are negligible in most cases provided the numerical scheme in use is
stable and the problem "generic". That is also true for iterative linear system solvers used in our
codes, like GMRES- or FOM-based software (see Sec. 12.4.3).

In order to reduce time for computation matrices of the above operator equations, two fur-
ther basic enhancements (cache for exponential functions (plane waves described in Sec. 12.4.6)
at the algorithmic level are used in our codes: cache for kernel functions, and cash for repeating
pairs or quads of layers. They assume a large time-memory trade-off. The amount of memory
required for cache can be calculated in advance in each case and adjustments (cache off or par-
tial) are done automatically. More acceleration can be reached in some cases, e.g. if one uses
iterative algorithms to solve a linear system of algebraic equations (see Sec. 12.4.3).

12.6.1 Implementation of multilayer schemes

Here we describe an implementation of the S-matrix algorithm combined effectively with the
conical integral equations formulated for solving such multilayer grating problems. We discuss
briefly the numerical solution of the system (12.112). As mentioned before, the scattering
matrices are obtained by solving one-profile equations with a finite number of illuminations
(12.107). The indices n of these illuminations should be chosen such that additionally to the
diffracted outgoing modes the Rayleigh coefficients of some evanescent modes are also taken
into account. Let the grating formed by the profiles Σ j, which separate optical materials with
the parameters ε j,µ j and ε j+1,µ j+1. The indices of propagating modes are characterized by
the values n such that β ( j)

n ≥ 0 above Σ j and β ( j+1)
n ≥ 0 below Σ j. Suppose that their number

is Pu ≥ 0 above and Pd ≥ 0 below the profile. Further, we fix numbers ku and kd of evanescent
modes which are important to keep in the scattering matrices. This results in quadratic reflection
matrices r j and r′j of order 2(Pu +ku)×2(Pu +ku) and 2(Pd +kd)×2(Pd +kd) for illumination
from above and below, respectively. The transmission matrices t j and t′j are rectangular of
dimension 2(Pd +kd)×2(Pu +ku) and 2(Pu +ku)×2(Pd +kd) for illumination from above and
below, resp.

These matrices are constructed columnwise from the scattering amplitudes of the solu-
tions of the equation (12.112) with right-hand sides of index n within the fixed range. Note,
one has only once to discretize the integral operators in (12.112) and the LU-decomposition
of this discrete matrix provides the solutions immediately and, hence, all four scattering matri-
ces simultaneously. Therefore, we use a direct solver with LU-decomposition for computing the
scattering matrices. It should be noted that modern implementations of the LAPACK and BLAS
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software packages on multi- processor/core/thread machines makes direct solving a competitive
alternative to iterative solution methods even for very large systems, N & 10000.
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Figure 12.5: The computation time for the lamellar grating example described in Table 12.1.

Expressions (12.149) and (12.150) allow us to find amplitude matrices by a recursive
procedure beginning with the lower medium. To do this, we have to know, in a general case,
four matrices of scattering amplitudes and perform two matrix inversions in each iteration step.
The computation time for one-boundary problems was shown to scale quadratically with the
main accuracy parameter N (see Fig. 12.5). The computation time is also linearly proportional
to the number of boundaries. The memory cache for amplitude matrices of multi-layer grating
problems (e.g. photonic crystals) with the same boundary profiles and the same pairs or quads
of layers can be used (see Section below).

Efficient implementation of the penetrating solver should use the modern implementa-
tions of the LAPACK and BLAS software packages and their analogues on multi- proces-
sor/core/thread machines. Although the algorithm requires a larger number of matrix-matrix
multiplications compared to the separating solver and even the inversion of dicretization matri-
ces, even quite complicated problems can be solved on a modern PC in reasonable time.

12.6.2 Cache for kernel functions

Matrix elements of discretized integral equations are kernel functions of one of four types con-
sidered: single-layer potentials, double-layer potentials, normal derivatives of single-layer po-
tentials, and tangential derivatives of single-layer potentials. Any of these kernel functions for
the given layer has two vector arguments: the source position x and the observation point x0.
The value of the kernel function depends on the difference vector d = x−x0.

There are a number of cases of practical interest when the same difference vector d cor-
responds to more than one pair {x,x0}. Typical situations include:

• conformal layers; upper and lower boundaries of such a layer are obtained from each
other by a vertical shift;

• more generally, layers whose boundaries are congruent by a translation (not necessarily
in the vertical direction);
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• rectilinear segments of boundaries, if collocation points are uniformly distributed along
such a segment.

In all these situations, it is possible to re-use values of kernel functions calculated earlier.
The program stores the data: type of potential and difference of arguments vector (∆x,∆y) — in
lexicographical order. Fast search and insertion are provided by a binary tree structure [12.34].
Memory expenditure for the kernel function cache is of the order cN2 per layer, where N is the
maximum number of discretization points on the boundaries, and the constant c incorporates the
size of data structure corresponding to each node of the tree. If no further layer has a refractive
index of the current layer, then the cache gets overwritten as the solver proceeds to a new layer.
However, it is quite typical to have a multilayer structure with repeating indexes, in which case
the kernel function computed for one layer has a chance to be re-used in another layer. Note
that the constant c is less the more effective the cache is (that is, the more repetitions occur).
To save memory, single precision values are used for the difference components ∆x, ∆y. This
approach does not compromise accuracy to any noticeable extent.

12.6.3 Cache for repeating pairs or quads of layers

The memory cache for scattering amplitude matrices (computation matrices of the operator
equations considered) of multilayer grating problems with separating boundaries with the same
boundary profiles and the same pairs or quads of layers can be used. The actual number of iden-
tical pairs or quads of layers can be large, up to a thousand for hard x-ray grating applications.
For flexibility and possible reuse of scattering matrices of the Separating solver in multi-stack
grating structures with repeated layer patterns, the dynamic caching procedure using a hash
function for fast storing and extracting of boundary and adjusting layer basic parameters is ini-
tialized separately for each interface starting from the bottom. In such a procedure previously
calculated instances are taken for reuse in accordance with hash function values.
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Figure 12.6: The computation time for a typical x-ray grating efficiency problem with repeated pairs of layers vs.
number of identical boundaries.

Computation time of the efficiency of a coated grating with many of repeated pairs or
quads of layers and equal separated boundaries can be decreased by orders of magnitude using
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such memory cache for scattering matrices. For example, if the number of pairs of layer with the
same boundary is more than 50, then the computation time for typical x-ray grating problems
decreases more than 100 times—see Fig. 12.6.

12.7 Modifications of integral methods for very small wavelength-to-period ratios

It is well-known that solution of the 2D Helmholtz equation with any rigorous numerical code
meets with difficulties at small λ/d. While the standard IMs are robust, reliable and efficient,
they exhibit poor convergence and loss of accuracy in the high-frequency range due to numeri-
cal contamination in quadratures. Increasing matrix size and enhancing computation precision,
as well as application of convergence speed-up techniques, which are successfully explored
in low- and mid-frequency ranges, lead to unreasonably stringent requirements for computing
times and storage capacities in high and, especially, ultrahigh frequency ranges (d/λ > 103).
For various kinds of integral equations and approximation technique used for solving diffrac-
tion grating problems the computation accuracy is mostly determined from the accuracy of
computing the fundamental solution (see, e.g., Sec. 12.4). In order to approximate a wave with
wavenumbers k j = ν jd/λ in accordance with the Rayleigh criterion, in the Helmholtz equation
one needs to use about 10 (usually from 5 to 20; it depends on a groove profile) discretization
points per wavelength. So, for very large wavenumbers, say k j ∼ 1000, discretization matrix
size should be of the order N ∼ 104, a huge enough number even for modern PCs. The inaccu-
racy of computation of the fundamental solution, together with some rounding errors, increases
significantly, up to totally divergent results, if one goes far from this simple rule of thumb. The
term modified integral method used in publications with regard to the PCGrate software was
introduced with flexibility in mind. More precisely, it is meant to be ‘"modifiable" or "tunable",
however we keep the earlier term as a label. In a narrow technical sense, the MIM is character-
ized in this Section by a number of simple modifications required for the standard IM, similar
to the one described in Ch. 4, to transform it to the MIM, together with relevant discussions.

The boundary integral equation theory is so flexible and complex that we can point out a
few areas of its modifiability. (1) In the physical model, one can choose boundary types (pe-
riodical or non-periodical, closed or non-closed, smooth or having edges, randomly rough or
deterministic, etc) and boundary conditions (rigorous or non-rigorous, perfect or finite conduct-
ing, extending, etc). (2) In the mathematical structure, integral representations using various
potential operators and/or integral formulas together with multi-layer schemes can be consid-
ered. (3) In the method of approximation and discretization, numerical scheme of discretiza-
tion (Nyström, or collocation, or Galerkin, or Method of Moments, hybrid, etc), basis and test
functions (piecewise constant, or trigonometric polynomials, or splines, or delta, or Lagrange
polynomials, etc), and including treatment of corners in boundary profile curves can be chosen.
(4) In the low-level details, one can define methods of calculations of kernels (direct methods
using Hankel or exponential functions, or Ewald’s method, or high-order summations, etc);
and using acceleration techniques (Kummer or Euler-Knopp summation, or single-term correc-
tions, etc), meshes of sampling (collocation) points (uniform or non-uniform), quadrature rules
(trapezium, or Gaussian, or more sophisticated); solutions of linear systems (direct methods or
iterative solvers). (5) In the implementation improvements, one can use caching of repeating
quantities (exponential and kernel functions, pairs or quads of layers in multilayer structures,
etc), treatment of Rayleigh orders, etc. In this Section, special attention is paid to important
aspects of the presented MIM for small λ/d diffraction problems in connection with (3)–(5),
and also, briefly, to some details of the numerical implementation. More about the MIM im-
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plementation can be found in the documentation devoted to the PCGrate software and also in
specific references [12.1].

Diffraction from 1D multilayer gratings with arbitrary boundary profile shapes, including
edges, is considered in this Section in a general case of off-plane mounts. The term 1D multi-
layer refers to a general grating on a planar surface of arbitrary conductivity which is periodic
in one direction, constant in the second, and has a finite number of borders and layers in the
third. The actual number of identical or different borders and layers can be large enough, up
to a few thousand for hard x-ray grating applications. Though various approximated analyses
developed for the treatment of such challenging diffraction problems enjoy more or less suc-
cessful application [12.35], they are always plagued with uncertainties which make comparison
between rigorous and non-rigorous approaches difficult. In the present study, special attention
is paid to all aspects of the MIM for λ/d ≪ 1 ratios. A few commercial and non-commercial
solvers based on the MIM are used in this Section and also in Sec. 12.9 to analyze the diffractive
properties of various bulk and multilayer gratings including those having real boundary profiles
of the polygonal type obtained by averaging measured data from Atomic Force Microscopy
(AFM).

12.7.1 Approximations

As to the multilayer schemes implemented, there are no substantial differences between the
well established approaches suitable for resonance domains (see Secs. 12.5 and 12.6) and the
MIM in these higher levels of the multilayer boundary integral equation theory. We use both
the Penetrating and Separating solvers to treat efficiencies of multilayer x-ray–EUV gratings
having many boundaries with thin structure including random micro- and nano-roughness (see
Sec. 12.8 and Sec. 12.9.9). However, the mid- and low-level MIM structures including the
method of discretization have a few important peculiarities described below.

It is well-known the convergence and accuracy of IMs depend greatly on an appropriate
choice of the discretization scheme and respective quadrature method for solving integral equa-
tion systems. As a rule, a Nyström discretization or a collocation method, as well as a Method
of Moments or a Raleigh-Ritz-Galerkin approach, which are not described here, or their combi-
nation, is a good choice to treat both general and particular diffraction problems. The sampling
points of unknown functions can be distributed on some uniform or multi-scale grids. In low-
and mid-frequency ranges, better results are often obtained using equidistant steps along the arc
length. Another possible function of the distance between collocation points is prescribed by
equal steps along the x-axis perpendicular to the grooves.

In the MIM, the fastest Nyström method with the rectangular quadrature rule is used
(see Sec. 12.4). Such a simple, fully discrete method combined with some matrix element
modifications works well for shallow smooth boundary profiles and, particularly, at small λ/d.
In the presence of a boundary profile with corners (piecewise linear), another approach can be
effective. The sampling and quadrature nodes are set in such a way that every corner lies half-
way between the adjacent nodes and no curvature-like single-term corrections (see (12.82))
are added to diagonal matrix elements. Let us match a solution in N midpoints σ(ti+1/2) of
[σ(ti),σ(ti+1)] by setting φ−(σ(ti+1/2)) = (φ−(σ(ti+1)) + φ−(σ(ti)))/2. Then we obtain a
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linear system of algebraic equations for φ−(σ(tk)), k = 1, . . . ,N similar to (12.80)

φ−(σ(ti+1/2))+
N

∑
k=1

ci+1/2,kφ−(σ(tk)) = b(σ(ti+1/2)), σ(tk) = (X(tk),Y (tk)) ∈ Γ .

(12.130)

In this approach the period of integration is divided by a number of segments equal to the num-
ber of corners on the boundary profile. Thus, the sampling points and the quadrature nodes can
be put at same locations, as in (12.80), or interlacing by a half-segment shift, as in (12.130). The
choice between two these complementary approaches depends on desired accuracy of compu-
tations and time requirements. For shallow boundaries with a thin structure (multi-polygonal)
including roughnesses, the approach of (12.130) may have faster convergence. However, for
boundaries with several rather long and abrupt slopes the approach of (12.80) may be prefer-
able, especially if one uses (1) the curvature single-term correction by adding the corner term to
diagonal matrix elements or (2) the mesh grading together with the appropriate quadrature rule,
as in a case of deep gratings.

Instead of the direct summation algorithm used in the MIM and also in the IM of Ch. 4,
more sophisticated methods can be implemented to accelerate the computation of the integral
equation kernels, like as Ewald’s methods (see Sec. 12.4.5.2). Unfortunately, it has turned
out numerically that such approaches, at least those known for us, are not efficient for very
small λ/d diffraction grating problems. Thus, the MIM in a narrow sense is an approximation
approach with a simple discretization that also specifies a summation method for kernels.

12.7.2 Convergence and accuracy with and without speed-up technique

It is well known that the number of discretization points per wavelength used in the various
IMs can be reduced significantly, up to an order of magnitude, when λ/d and H/d become
small. The question is how small it might be for very small λ/d diffraction problems, say for
λ/d . 10−3. To accelerate convergence of the series representing kernels, different acceleration
techniques can be applied (see Sec. 12.4 and also Ch. 4). In Figs. 12.7–12.10, convergence of
the IM is demonstrated for an analytical case of diffraction from a plane transmission interface
prescribed by a zero-depth sinusoidal profile at normal incidence in a vacuum with the lower-
medium refractive index of ν1 = 1.5 and for different λ/d. Note that for all numerical examples
in this Subsection, the number of positive and negative terms accounting in kernel functions was
chosen at N/2 (see in Section 12.7.3).

For λ/d = 1 in Fig. 12.7, the convergence rate reached with speed-up techniques (all
single-term corrections in kernels are used) is high, with the energy balance error of ∼ 10−6

in both polarization states for the number of discretization points N = 10. For λ/d = 10−1 in
Fig. 12.8, the convergence rate reached with speed-up techniques is medium, with the energy
balance error of ∼ 10−5 in both polarizations for N = 100. For λ/d = 10−2 in Fig. 12.9, the
convergence rate, again obtained with speed-up techniques, is low, with the energy balance
and transmitted energy errors of ∼ 10−3 in both polarizations for N = 500. The difference
between the TE and TM transmitted energies for N < 300 is seen to be large, ∼ 10−1. For
λ/d = 10−3 in Fig. 12.10, the convergence rate calculated with speed-up techniques is very
low, with the Energy balance error of ∼ 10−2 in both polarizations for N = 103. As seen from
the figure, the convergence of the series deteriorates for N > 1000 as the distance between the
kernel function’s arguments tends to zero. In contrast to the plots of Fig. 12.10, the results
for λ/d = 10−6 obtained without application of any speed-up techniques exhibit the fastest
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Figure 12.7: Energy balance error with the standard IM using acceleration convergence terms for the problem of
diffraction on a plane transmission interface (normal incidence in vacuum with the lower medium refractive index
ν1 = 1.5) vs. N for λ/d = 1.
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Figure 12.8: Energy errors with the standard IM vs. N used for the same diffraction problem as in Fig. 12.7 but
for λ/d = 0.1.
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Figure 12.9: Energy errors with the standard IM vs. N used for the same diffraction problem as in Fig. 12.7 but
for λ/d = 0.01.
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Figure 12.10: Energy errors with the standard IM vs. N used for the same diffraction problem as in Fig. 12.7 but
for λ/d = 0.001.
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Figure 12.11: Reflected energy with the standard IM using acceleration convergence terms for the problem of
diffraction on a plane Au interface of non-polarized radiation with λ = 1 nm incident at θ = 89◦, plotted vs. N for
different λ/d.

convergence rate, with a negligible energy balance error of ∼ 10−16 for N = 2 only, and are
equivalent to analytical calculations.

In Fig. 12.11, convergence of the standard integral method is demonstrated in respect to
the main cut-off parameter N for another analytically amenable case, i.e. of x-ray diffraction
from a plane absorbing interface (grazing incidence in vacuum of non-polarized radiation to
plane Au surface prescribed by a zero-depth sinusoidal profile) for λ = 1 nm, θ = 89◦, and
different λ/d. The refractive indices of Au for all examples in this Section were taken from
Ref. 12.36. For λ/d = 10−2, the convergence rate reached using speed-up techniques (i.e.
by the standard IM) is high, with the reflected energy error of ∼ 4.9× 10−6 for the number
of discretization points N = 40 (the exact reflectance value is 0.7999). For λ/d = 10−3, the
convergence rate reached with speed-up techniques is medium, with the reflected energy error
of ∼ 10−3 for N = 200. For λ/d = 10−4, the convergence rate, again obtained with speed-up
techniques, is low, with the reflected energy error of ∼ 6.2× 10−3 for N = 103. For λ/d =
10−5, the convergence rate calculated with speed-up techniques is very low, with the reflected
energy error of ∼ 7.7×10−2 for N = 2×103. In contrast to the plots of Fig. 12.11, the results
for extremely low λ/d of 10−7 obtained by the MIM without application of any speed-up
techniques exhibit the fastest convergence rate with a negligible reflected energy error of ∼
10−16 for N = 2 only and are equivalent to analytical calculations. Thus, we see for this grazing-
incidence absorbing example the same behavior of kernel functions as in the previous absolutely
different case of the normal incidence on the lossless medium.

As one can see from Figs. 12.7–12.11, at least one discretization point per wavelength
is required to reach efficiency convergence for the standard IM. In contrast to that, the MIM
with the simple, however very important, changes in respect to the described above standard
IM, i.e., without applying acceleration convergence terms at low λ/d only, works accurately
and ultra-rapidly despite the very small number of discretization points per wavelength used in
the approach. For example, if a period includes N = 102 and λ/d = 10−4, there is only 10−2

point per wavelength required for the MIM. While the results presented in Figs. 12.7–12.11
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Figure 12.12: Reflected −1-order efficiency of an Au sinusoidal 300 grooves/mm grating with a depth of 25 nm
illuminated by non-polarized radiation with λ = 4.4 nm incident at θ = 87.35◦, plotted vs. N for the standard IM
or the MIM.
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Figure 12.13: Reflected −1-order efficiency of an Au sinusoidal 3600 grooves/mm grating with a depth of 10.5 nm
illuminated by non-polarized radiation with λ = 4.4 nm incident at θ = 86.15◦, plotted vs. N for the standard IM
or the MIM.
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may certainly be different for various realizations of the IMs and of the speed-up techniques
used, the overall pattern remains the same.

Shallow gratings and rough mirrors exhibit a similar behavior for very small λ or λ/d
(very large wavenumbers k) in the x-ray and EUV ranges (see Figs. 12.12 and 12.13). In
this case, however, the effective boundary profile depth ∼ H cosθ , the bilayer thickness ∼
λ/(2cosθ ′) (θ ′ = arcsin[(sin2 θ cos2 ϕ + sin2 ϕ)0.5]), and the effective radiation wavelength
∼ λ/(ν j cosϕ j) must be of the same order of magnitude. In the present approach, the pecu-
liarity described in Ref. 20 ("Introducing known speed-up terms in integral methods produces
an adverse numerical effect because of the ensuing uncontrolled growth of coefficients in an-
alytically (or numerically—Goray & Schmidt) improved asymptotic estimations") takes into
account mostly for the case of shallow x-ray–EUV gratings working at very small λ/d and
including, if any, random roughness (for more, see Remark below and also Section 12.8).
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Figure 12.14: Energy balance and transmitted energy with the MIM, plotted vs. g at N = 100 for the same
diffraction problem as in Fig. 12.7 but for λ/d = 0.01.

As shown in this Subsection with all speed-up options turned off, it is possible to obtain
for the most difficult problems of small λ/d ratios surprisingly rapid convergence, and an en-
ergy balance very close to 1. The most important among the convergence speed-up options
which have to be switched off in this case is the allowance for logarithmic singularity, and sec-
ond in importance is the correction applied to account for the cut-off terms in the expansions
of kernels (the Aitken’s δ 2 single-term correction in our case (see Sec. 12.4.5.1)). Switching
off the curvature single-term correction is of lower but not minor significance on the way to
reaching fast convergence. Such calculations at very low λ/d also depend significantly on the
actual summation rule chosen for the kernel functions that will be discussed in next Subsection.

Remark 12.7.1 The same rule for the relations between basic grating and light parameters
and reaching the maximum diffraction efficiency in a desired order is, on the whole, valid for
longer wavelengths, too. For example, the MIM with speed-up options turned off can be applied
also for echelle gratings working at very high orders (very low λ/d) and H cosθ/d ≪ 1 [12.5,
12.35]. Thus, the record of rigorous computations was achieved for the r-10 EXES echelle grat-
ing of the NASA project SOFIA with d = 7.62 mm working in the −1431 order at a wavelength
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Figure 12.15: Energy balance of an Au sinusoidal 300 grooves/mm grating with a depth of 10.5 nm illuminated by
non-polarized radiation with λ = 0.834 nm incident at θ = 88.65◦, plotted vs. g for N = 100 and the standard IM
or the MIM.

of 10.6-µm [12.1]. Because of the very small wavelength-to-period ratio (λ/d ∼ 0.001) and
rather deep profile depth (2H/d ∼ 0.1) it is necessary for such a case to increase the truncation
parameter N up to a value of ∼ 3000.

12.7.3 Summation rules for kernel functions and energy balance

For many practical cases, there are no big problems to reach fast convergence and sufficient
accuracy of results obtained by only varying the major accuracy parameter N j, which is usually
the same for all boundaries of gratings layers: N j = N. The N values of 100–400 provide good
accuracy commonly, with the exception of the following difficult cases: very deep (in respect
to period and/or wavelength) boundaries; real boundary profiles with super fine structures in-
cluding random roughness; very close boundaries; extremely grazing incidence; bad points on
Rayleigh wavelengths, resonance anomalies of different kinds; high order echelles; high con-
ductivity (especially for the TM polarization); some others and, especially, a combination of
a few of these cases. For such complex problems, an increase in the number of discretization
points may become necessary. However, to obtain accurate data for hard examples of computa-
tions, i.e. at very low λ/d, optimization of another accuracy parameter should be fulfilled.

In addition to N, there is one more important code parameter, namely the "Maximal num-
ber of accountable plus or minus terms" that describes a number of positive and negative terms
accounting in kernel functions. This is the number of grating adjacent periods accountable in
expansions of Green functions and their derivatives due to the quasi-periodicity property of the
fields. In the simplest case typical of real problems, all kernels are truncated symmetrically in
respect to the upper and lower regions and equally for any j-th boundary:

P̃±
j = P̃j = P̃ ≈ gN j = gN. (12.131)

The "truncation ratio" g is optimized at small values of N and is kept constant as N increases.
It has been found [12.25] that g = 1/2 is a reasonably good choice for most practical compu-
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Figure 12.16: Energy balance vs. g used for the same diffraction problem as in Fig. 12.15, but for N = 400.

tations, and especially in the short wavelength range. Typical dependencies on P̃ for the above
example with λ/d = 10−2 are shown in Fig. 12.14. The energy balance is closer to 1 in both
polarizations and TE/TM transmitted energies are close to each other at P̃ = 50% of N, with
divergence seen to set in at smaller and larger values of g.

For another, very different, example of the absorbing x-ray grating working at grazing
incidence, one can see similar dependencies of the energy balance on P̃ in Figs. 12.15 and
12.16 for different numbers of discretisation points. The energy balance is close to 1 for both
integral methods considered at P ≈ 50% of N = 102 with a very high rate of convergence for the
MIM and very slow convergence for the standard IM, similar to the convergence dependencies
on N presented above. While the MIM has the long-range of high accuracy converged results
from P̃ ≈ 40% to P̃ ≈ 70% in Fig. 12.15, only two points in a curve for the standard IM have the
energy balance values close to 1, with divergence seen at both sides from these points. Similar
behavior is seen in Fig. 12.16 for the high value of N = 400, where again the energy balance is
close to 1 for the MIM and the standard IM at g ≈ 0.5.

While today this rule is no more than empirical, there can be no doubt whatsoever that
this choice is valid, and this has been verified in many realistic examples during the past two
decades. Note that in the IM developed by D. Maystre during the later 70s [12.37], g = 2/3
for the resonance domain (λ ∼ d) and should be varied for different λ/d . It is worth noting
that g = 2/3 is worse than g = 1/2 because the computation time is proportional to 2P̃N2. It
is interesting that the first "good" point in Fig. 12.15 for the standard IM is close to the value
of g = 0.5, i.e. our "golden rule", and the second "good" point—to the value of g = 0.7, which
agrees well with the rule of g = 2/3 given earlier for the standard IM. The present golden rule
is also approximately satisfied for the all examples of numerical results given in Ch. 4.

To reduce computing time for matrices of the discretized operator equations, a few en-
hancements at the algorithmic level are used in the MIM: cache for kernel functions, cache for
exponential functions, and cache for repeating pairs or quads of layers of multilayer gratings
(see Secs. 12.4.6, 12.6.2, and 12.6.3). They assume a big time-memory trade-off at small λ/d.
The amount of memory required for cache can be calculated in advance in each case and ad-
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justments (cache off or partial) are done automatically. The computation algorithm group in
PCGrate codes enables one also to choose an algorithm for solving linear systems of algebraic
equations. It can be either the direct Gauss or the non-direct FOM method (see Sec. 12.4.3).
Note that in the Penetrating solver, linear systems are solved with the Gauss algorithm alone.

Remark 12.7.2 One more important note regarding the energy balance summation for very
small λ/d problems appears to be pertinent here. The Green function and its derivative mem-
bers tend to big values near Raleigh wavelengths when the y-component β (0),(M)

n of the n-th
diffraction order wave vectors in the upper medium or/and in the lower medium (for transmis-
sion gratings) tends to zero (see (12.20)). This means that the diffraction order becomes grazing
or even close to evanescent. Its efficiency may be rather high from the physical point of view
or/and diverge from the mathematical point of view (it depends also on N). It is well known
from the diffraction theory that the efficiency of strictly grazing propagating, as well as of all
evanescent, orders is zero. Moreover, various rigorous and approximate methods valid for shal-
low gratings operating at small λ/d, as well as all experimental data suggest convincingly that
the efficiency decreases rapidly with increasing modulus of the diffraction order number. As a
rule, the efficiencies of such grazing orders should be very close to zero and much less than the
inaccuracy of computations. Thus, rather big and diverging efficiencies of high number grazing
orders should be excluded from the energy balance consideration, for example, starting from a
high order which becomes increasing in efficiency.

12.8 Analysis of rough gratings using quasi-periodicity and Monte Carlo calculus

Multi-wave and multiple diffraction, refraction, absorption, waveguiding and wave deforma-
tion govern, to a considerable extent, scattering of x-ray and EUV radiation and cold neutrons
from nanoroughness of continuous media. Inclusion of these pure dynamic effects, which re-
quires application of electromagnetic theory, permits one to calculate the absolute intensity of
coherent (specular or diffraction order) components and describe adequately the intensity dis-
tribution of the non-coherent (diffuse) components which may have resonance peaks. Some
surfaces are deterministic, e.g., perfect gratings, and some are random, e.g., polished mirrors).
Some surfaces are 1D, e.g., one-periodic (classical) gratings and cutting mirrors, but most are
2D, e.g., bi-periodic gratings (bigratings), ocean surfaces, and surfaces with atomic scale rough-
ness. Any number of possible combinations between these four characteristics may be present
in real structures, e.g., 1D deterministic gratings modulated with 2D random roughness. Despite
the impressive progress reached recently in development of exact numerical methods of investi-
gating wave diffraction from boundary roughness [12.38, 12.39], the present authors are aware
only of asymptotic and perturbation approaches to the analysis of x-ray and neutron scattering
for 1D and 2D rough surfaces, such as the scalar Kirchhoff integral, parabolic wave equation,
Rayleigh method, Born approximation, distorted-wave Born approximation, and a few others
[12.40, 12.41]. The MIM and other rigorous approaches identified that the intensities of x-
ray–EUV scattering at boundaries with random roughnesses may differ considerably (by a few
times) from the values derived with the use of various approximate models [12.5, 12.6]. It was
found that the MIM operates equally well with nano-roughness of any kind and shape which
obey arbitrary statistics of distribution (not necessarily periodic or Gaussian, or fractal, etc.).

There are two classical and equivalent approaches, with some restrictions in each of
them, to model rigorously randomly-rough 1D and 2D surfaces. The most general and time-
consuming one is to use large surface lengths of many wavelengths. In this approach some
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window functions and tapered (narrowing) beams can be used to restrict the illuminated range
and avoid numerical difficulties at endpoints. The second widely-explored approach is to use
periodic boundary conditions (quasi-periodicity of Floquet-Bloch modes). This method uses
an infinite beam (plane wave) and assumes that the random rough surface lengths repeats itself
for given large periods having some numbers of random asperities. That means using infinite
grating samples together with intensive Monte-Carlo simulations. Examples of the both famous
approaches are well described in the literature, see e.g. in Refs. 12.38, 12.42–12.44. From the
theoretical and numerical reasons we thought it convenient to use the large-period-grating model
to analyze shallow randomly-rough gratings in the x-ray–EUV range. This classical model for
computation of bulk or few-border rough mirrors and quasi-gratings is applied in PCGrates
and other of our codes to calculate multilayer rough mirrors and gratings, as well as multi-
ple quantum dot or quantum molecular ensembles with most realistic border profiles having
irregularities of any kinds, including real ones, i.e. measured by AFM, Transmission Electron
Microscopy, Near-field Scanning Optical Microscopy, etc, or derived from simulations using a
continuum growth model of multi-scale reliefs [12.45–12.47].

Diffraction from 1D surface grating-like structures with shallow boundary profile shapes
is considered in this Section for the sake of simplicity for bulk gratings working in conical
diffraction at small λ/d ratios. A generalization to a multilayer case is straightforward. The
integral equations developed in the previous Sections are used in the present Section to analyze
the diffractive properties of bulk gratings with real-profile boundaries having random rough-
nesses. The Section also reports on the electromagnetic solution of reflection from 2D rough
surfaces in short waves using boundary integral equations for gratings in conical diffraction and
Monte Carlo simulations. The general equivalence rule for determination of the efficiencies of
reflected orders of bigratings (2D) from those calculated for classical (1D) gratings is derived.

12.8.1 Scattering intensity, absorption, and energy balance of rough 1D gratings

For a given incident plane wave with wave vector

k = (α ,−β , γ) = k+(sinθ cosϕ ,−cosθ cosϕ , sinϕ),

the reflected and transmitted diffraction orders of number n have the wave vectors

k±
n = (αn,±β±

n , γ) = k±(sinθ±
n cosϕ±,±cosθ±

n cosϕ±, sinϕ±),

with (k±)2− γ2 = αn
2+(β±

n )2, (β±
n )2 ≥ 0. Since the z-dependence of all functions is given by

exp(iγz)

tanθ±
n = αn/β±

n , ϕ+ =−ϕ , ϕ− = arcsin(k+ sinϕ/k−).

By convention, the outgoing angles θ±
n of the reflected and transmitted orders (to ensure that

θ+
0 =−θ ) are taken from the interval [−π/2 ,π/2], as well as ϕ+ and ϕ−.

The p- and s-components of the E-fields of the plane waves (incident and diffracted) are
defined with respect to the grating normal n = (0,1,0). We define the vectors s orthogonal to
the plane spanned by k and the grating normal and p lying in that plane (see Sec. 12.2):

s = k× (0,1,0)/|k× (0,1,0)| , p = s×k/|k|.
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If k = (0,k,0), we set s = (0,0,1) and hence p = (1,0,0). Since for a plane wave the electric
field E is orthogonal to the wave vector, (E,k) = 0, one can decompose E

E = (E, s)s+(E, p)p.

The polarization angles of the wave are defined as

δ = arctan[|(E,s)|/|(E,p)|],
ψ =−arg[(E,s)/(E,p)],

where δ ∈ [0,π/2], ψ ∈ (−π,π]. Such a representation of polarization angles is useful to define
polarization states and polarization properties of incoming and diffracted waves in diffraction
grating applications, see, e.g., Examples in Sec. 12.9.

The efficiency of a diffracted order represents the proportion of power radiated in each or-
der. Defining the power as the flux of the Pointing vector modulus |P|= Re(E×H)/2 through
a normalized rectangle parallel to the (x,z)-plane, the ratio of the power of a reflected or trans-
mitted propagating order and of the incident wave gives the conical diffraction efficiency η±

n of
this order in the simple form (see (12.67), (12.68)). For the reflected orders we have

η+
n =

β+
n
β

(ε+
εv

|E+
n |2 + µ+

µv
|B+

n |2
)
,

where the formulas for E±
n , B±

n are given by (12.69) and (12.70). If Imk− > 0 then there are no
transmitted orders. Thus, the usual law of energy conservation, that the sum of efficiencies of
all reflected and transmitted orders should be equal to the power of the incident wave, does not
hold. Instead, some part of the power is absorbed in the substrate. If the grating is absorbing,
then conservation of energy is expressed by a criterion

R+A = ∑
β+

n >0

η+
n +A = 1, (12.132)

where R is the sum of the reflection order efficiencies and A is the absorption in the single-
boundary off-plane problem that can be computed from integrals of the solution of the partial
differential formulation of conical diffraction (see (12.74)). For the general elliptically polarized
incident light in conical diffraction, the reflected efficiency can be found as

η+
n = |C+

n (θ ,ϕ ,δ ,ψ)|2β+
n (θ+

n ,ϕ+)/β (θ ,ϕ), (12.133)

where |C+
n |2 for a reflected order of the number n in conical diffraction is expressed by

|C+
n |2 =

ε+
εv

|E+
n |2 + µ+

µv
|B+

n |2 .

As mentioned in Sec. 12.3.2, the balance requirement (12.132) is one of the most impor-
tant accuracy criteria based on a single computation generalized in the lossy case by the explicit
computation of A from (12.73). The sum R+A is actually the energy balance for an absorbing
grating in conical diffraction, including that having rough grooves, and the extent to which it
approaches unity is a measure of the accuracy of a calculation.

For λ/d ≪ 1 the discrete order efficiencies is an approximation of the differential reflec-
tion coefficient (DRC) ς (analogous of a bistatic scattering coefficient [12.38]) for a continuum
of scattered angles so that

∑
β+

n >0

η+
n =

∫ π/2

−π/2
ς(θ+

n )dθ+
n . (12.134)
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From the grating equation for conical diffraction in the form

k+xn = kx +
2πn

d
, (12.135)

where k+xn = k sinθ+
n cosϕ and kx = k sinθ cosϕ we know the derivative

dk+xn
dn

=
2π
d
. (12.136)

Then, for large enough N, |n| ≤ N and accounting dn = 1 one can derive

∑
β+

n >0

dn = ∑
β+

n >0

=
d

2π

∫ π/2

−π/2
k cosθ+

n cosϕdθ+
n . (12.137)

From (12.133), (12.132), and (12.137) we have

∑
β+

n >0

|C+
n |2β+

n /β =
d

2π

∫ π/2

−π/2

k cos2 θ+
n |C+

n |2 cosϕ
cosθ

dθ+
n . (12.138)

Compare (12.134) and (12.138) we obtain the DRC for conical diffraction

ς(θ+
n ) =

d cos2 θ+
n |C+

n |2 cosϕ
λ cosθ

. (12.139)

The general case of 2D rough surfaces may be considered in a similar way. It can be done,
for example, by expressing the solution of the 3D Maxwell equations for bigratings through
solutions of the 2D Helmholtz equation for classical gratings working in conical diffraction, an
approach which may be resorted to in some important cases (see Sec. 12.8.3).

12.8.2 Scattering intensity of rough gratings in a dispersive plane

For accounting random roughness rigorously in our codes, we use the model in which the ran-
domly rough surface is represented by a grating of large period d. This period may contain a
few or a large number of random asperities and/or a discrete number of periodic grooves. So the
program deals with a structure that is a grating from a mathematical point of view but that can
model a randomly rough surface of a grating or a mirror. If the groove spacing becomes small
compared with the correlation length ξ of the random asperities, then the discrete dimension
scaling can be applied to such a rough grating and the diffraction is investigated on the equiva-
lent surface structure in proportionally higher diffraction orders. Moreover, if the width of the
asperities has the same order of magnitude as the wavelength of incident light, the number of
diffraction order is large, and the continuous speckle of the randomly rough surface is simulated
by the discrete speckle of the grating, as has been demonstrated above.

In order to compute the scattering properties of a random rough surface using electromag-
netic solvers (Penetrating or Separating) and a Monte Carlo procedure, an ensemble of surface
realizations must be generated. There are several ways to generate a statistically stationary ran-
dom surface [12.48]. The most common approach consists in generating surface profiles by
the following technique. A sequence of random numbers (∼ 105) with Normal statistics, zero
mean, and variance (rms roughness) σ = 1 is constructed from another random series directly
generated by a computer. Then the former sequence is scaled in order to obtain a desired σ and,
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further, correlation with the Gaussian is performed in order to obtain a profile with a Gaussian
correlation function. This is known as the spectral method ([12.38]) and is used in PCGrate
codes.

The boundaries of such randomized grating or mirror have both periodical and random
roughness components and some averaging of random samples (from a few up to a several hun-
dred) is required to obtain the exact scattered field intensities (see Example 10 in Sec. 12.9). In
some conditions, fortunately not in x-ray–EUV, for instance when surface waves can propagate
(like polaritons for metallic surfaces in the TM polarization), very big numbers of discritization
points and propagating and evanescent orders (about a few thousand or even more) must be
taken into account. Rigorous computation of the field scattered by random rough surfaces is
a problem of daunting complexity in the area of electromagnetism and optics even for mod-
ern computers because of the very small wavelength-to-period and small wavelength-to-height
ratios. It is especially true for x-ray–EUV grating and mirror applications. Therefore, the hard-
est diffraction problems may require large amounts of computer memory and, especially, high
speed of computations.

12.8.3 Scattering intensity of rough gratings in a non-dispersive plane

The IMs, which have been developed in the frame of electromagnetic theory, permit application
of optical grating methods to analysis of specular and diffuse x-ray–EUV scattering from rough
gratings and mirrors using Monte Carlo calculus. The question of the closeness of results for
1D and 2D surfaces is of interest of this Section, since numerical methods for 1D surfaces are
well established and efficient, and widely used for surfaces with 2D roughness [12.39]. The
derivations of the boundary integral equations using potential operators as well as some details
of their numerical implementation were described in previous Sections. An important case
of bi-periodic gratings and 2D rough surfaces may be considered in a way by expressing the
solution of the 3D Maxwell equations through solutions of the 2D general Helmholtz equations
in conical diffraction, an approach which may be resorted to in short waves and shallow surface
using the equivalence rule derived in App. D.

The effect of roughness on the 2D DRC can be exactly taken into account with model in
which an uneven surface is represented by a bigrating with large periods of dx,z in perpendic-
ular planes, which include appropriate numbers of random asperities with correlation lengths
of ξx,z. We analyze a complex structure which, while being the bigrating from a mathematical
viewpoint, is actually the rough surface for dx,z ≫ ξx,z. If ξx,z ∼ λ and the number of orders is
large, the continuous angular distribution of the energy reflected from randomly rough bound-
aries can be described by a discrete distribution ηmn in orders (m,n) of a bigrating, similar to
(12.134) for classical gratings. A study of the scattering intensity starts with obtaining statisti-
cal realizations of profile boundaries of the structure to be analyzed, after which one calculates
the DRC for each realization, to end with the DRC averaged out over all realizations to obtain
a mean DRC. By selecting large enough samples and numbers of sampling points, one comes
eventually to properly averaged properties of the rough surface; however, this approach does
not involve approximations, including averaging by the Monte Carlo method.

12.8.3.1 The equivalence rule between 2D and 1D grating efficiencies

A general approach to find efficiencies of bigratings and mean DRCs of rough 2D surfaces
which permits one to use exact integral equations, rigorous (extended) boundary conditions,



12.60 Gratings: Theory and Numeric Applications, Second Edition, 2014

and radiation conditions leads to tedious calculus even in a case of perfectly conductive surfaces
[12.49]. However, a great deal of simplification of the given boundary-problem can be achieved
for shallow gratings and randomly-rough surfaces if we use the Rayleigh hypothesis together
with the small-amplitude perturbation technique. Implementations of such a method, in which
the reduced Rayleigh equations for reflection from such structure are solved in the form of
expansions of the amplitudes of the p- and s-polarized components of the scattered field in
powers of the surface profile function through terms, up to the third order, were proposed in
several papers (see, e.g., Ref. 12.50 and references therein). In the present work, the authors use
the perturbative analysis results only in order to derive an approximate connection rule between
the efficiency of a shallow bigrating and efficiencies of two classical gratings with grooves
rotating on 90deg. The efficiency itself of a classical grating working in conical diffraction is
defined rigorously using the boundary integral equation method, as it is prescribed in previous
Sections.

The equivalence rule can be formulated as the following (see (12.163) of App. D)

ηmn =
ηmηn

rF
, m∨n = 0,hx,z/dx,z < 1, (12.140)

where ηm and ηn are classical grating efficiencies obtained in conical diffraction, hx,z—profile
heights in perpendicular planes, rF—the Fresnel factor of a 2D surface. It is worth noting
that ηm and ηn in this equivalence rule should be computed with preservation of incidence and
polarization angles of both gratings in the absolute coordinate system.

Thus, using (12.140) the efficiency ηmn of bigratings can be easily expressed in terms
of the product of the efficiencies of two respective classical gratings considered in perpen-
dicular dispersive planes and working in conical mounts at any polarization state. Equation
(12.140) was derived in Ref. 12.37 for the normal incidence of linearly-polarized light on a
simple boundary-profile bigrating. The equivalence rule described above is very similar to the
impulse approximation result of the atomic scattering theory and can include multiple scattering
in each perpendicular direction but always excludes cross-correlation components.

The derived connection equation is approximate and valid for shallow periodic surfaces
of the type considered. However, this equivalence rule was checked successfully against var-
ious numerical examples, including non-shallow bigratings working at different wavelength-
to-period ratios [12.37, 12.51]. It was found that it gives accurate results under the following
assumptions: (a) hx,z . dx,z and (b) λ & dx,z. However, for non-deterministic surface profiles
working in short waves, some modification of these conclusions is required. As follows from
the known results obtained from analytic and asymptotic expressions valid for x-rays (see, e.g.,
Refs. 12.6, 12.40), (12.140) gives high-accuracy solutions for shallow rough 0D (i.e. rows of
atoms with displacements), 1D, and 2D surfaces if the following conditions are fulfilled: (c)
cosθ ′hx,z ≪ dx,z and (d) λ ≪ dx,z cosϕ , where θ ′ is an incidence angle on the surface. In case
of x-ray–EUV ranges refractive indices of materials are close to the vacuum refractive index and
hx,z can be large enough for grazing incidence. Thus (a) and (c) are close due to the nature of the
perturbative development. However, (d) extends the range of the validation of (12.140) signifi-
cantly, i.e. to the whole short-wave optical range because of the absence of optical resonances
(i.e. due to plasmons, polaritons, waveguide resonances, etc) in x-rays and EUV.

12.9 Examples of numerical results

The described theoretical and numerical approaches for the calculation of far-zone fields and
polarization properties of diffraction gratings are well suited to various types of optical grat-
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ing analysis. In this Section, we are going to analyze numerically examples of diverse grating
diffraction problems. The results presented demonstrate the impact of diffraction and polariza-
tion incident angles, boundary shapes and layer refractive indices on diffraction and absorption
in periodical structures.

Table 12.1: Diffraction efficiencies (η+), diffraction (θ+, ϕ+) and polarization (δ+, ψ+) angles of a metallic
lamellar gratinga

DOb θ+,◦ ϕ+,◦ η+,% δ+,◦ ψ+,◦

R−2 −43.715 −20.705 7.52 61.85 48.30
R−1 −9.007 −20.705 13.25 15.79 −12.23
R0 22.208 −20.705 44.27 41.33 170.15
R1 65.852 −20.705 31.05 75.64 166.30

ac/d = 0.5, 2H/d = 1, ε+ = 1, ε− = (−24.99,1), µ± = 1, λ/d = 0.5, θ = 22.208◦, ϕ = 20.705◦, δ = 45◦, ψ = 0.
bDiffraction order

Table 12.2: Diffraction efficiencies (η±), diffraction θ±, ϕ±) and polarization(δ±, ψ±) angles of a dielectric
lamellar gratinga

DOb θ±,◦ ϕ±,◦ η±,% δ±,◦ ψ±,◦

R−2 35.265 −30 0.1612 64.32 −30.24
R−1 0 −30 0.3807 66.0 −157.22
R0 35.264 −30 1.854 70.43 −148.60
T−3 −45 −19.471 3.363 51.05 32.28
T−2 −20.705 −19.471 10.35 56.24 110.23
T−1 0 −19.471 31.87 46.54 99.02
T0 20.705 −19.471 14.19 34.26 68.38
T1 45 −19.471 37.83 46.34 86.83

ac/d = 0.5, 2H/d = 0.5, ε+ = 1, ε− = 2.25, µ± = 1, λ/d = 0.5, θ = 35.264◦, ϕ = 30◦, δ = 45◦, ψ = 90◦.
bDiffraction order

In this Section, we present several numerical experiments taken from well-known spec-
troscopic applications of gratings working in various mounts and polarization states at different
wavelengths. More specifically, they are: the typical dielectric and metallic lamellar gratings il-
luminated in conical diffraction; the typical dielectric sine grating working in off-plane mounts;
the typical metallic echelette gratings illuminated in conical diffraction; the anomalously ab-
sorbing Ag shallow-sine grating working in off-plane mounts in the visible; the photonic crys-
tals with Au nanorods of various cross-sections illuminated at normal incidence in the visible–
near-infrared; the photonic crystal with dielectric circular nanorods working in different mounts
in the near- and mid-infrared; the Al echelle grating protected by a thin layer of MgF2 and illu-
minated in conical diffraction in the vacuum ultraviolet (VUV); the Au blaze grating working
in grazing-incidence off-plane mounts in soft x-rays; the minimally-absorbing Mo/B4C mul-
tilayer blaze grating illuminated in grazing conical diffraction in soft x-rays; the flight Mo/Si
multilayer trapezoidal grating working in the near-normal-incidence EUV and with random
roughness accounting. The numerical examples of calculation results described in this Section
were calculated using a few commercial and non-commercial IM-based codes.
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12.9.1 Efficiencies and polarization angles of lamellar gratings

The efficiency results of reflection orders of the present IM for a typical conducting lamellar
grating with the ridge width c and depth 2H working in a conical mount are demonstrated in
Table 12.1. The grating and light parameters are as follows: c/d = 0.5, 2H/d = 1, ε+ = 1,
ε− = (−24.99,1), µ± = 1, λ/d = 0.5, θ = 22.208◦, ϕ = 20.705◦, δ = 45◦, and ψ = 0. We
used 400 discretization points, mesh grading and the discretization of V+J− to calculate this
example that allocates 188 MByte memory. The energy balance error calculated from (12.74)
is ∼ 10−6. The average time taken up by the example on a workstation with two Quad-Core
Intelr Xeonr2.66 GHz processors, 8 MB L2 Cache, 1333 MHz FSB and 16 GB RAM is ∼ 1.5
s when operating on Linux Ubuntu 12.04 LTS 64-bit or Windows Vistar Ultimate 64-bit and
employing eightfold paralleling.

Table 12.3: Diffraction efficiencies (η±) and diffraction (θ±, ϕ±) and polarization (δ±, ψ±) angles of a dielectric
sine grating for Bz = 0a

DOb θ±,◦ ϕ±,◦ η±,% δ±,◦ ψ±,◦

R−3 −43.384 −15 1.121 70.99 3.60
R−2 −9.744 −15 3.741 26.90 0.93
R−1 20.389 −15 3.873 63.25 178.18
R0 60 −15 10.33 88.93 178.05
T−5 −57.013 −7.435 .01855 80.19 −114.68
T−4 −35.921 −7.435 .002482 52.58 100.24
T−3 −19.545 −7.435 .7394 57.61 −179.28
T−2 −4.729 −7.435 4.922 22.90 174.84
T−1 9.770 −7.435 9.923 60.39 4.72
T0 24.949 −7.435 7.145 77.32 6.84
T1 42.371 −7.435 51.83 84.43 −5.78
T2 67.826 −7.435 6.351 84.85 −11.39

a 2H/d = 0.3, ε+ = 1, ε− = 4, µ± = 1, λ/d = 0.5, θ = 60◦, ϕ = 15◦, δ = 81.501◦, ψ = 0.
bDiffraction order

In Table 12.2, the efficiency data of reflection and transmission orders for a similar di-
electric lamellar grating in a conical mount are presented. The grating and light parameters
are as follows: c/d = 0.5, 2H/d = 0.5, ε+ = 1, ε− = 2.25, µ± = 1, λ/d = 0.5, θ = 35.264◦,
ϕ = 30◦, δ = 45◦, and ψ = 90◦. We used N = 400, mesh grading and the discretization of
V+J− to calculate this example that allocates 188 MByte memory. The energy balance error
calculated from (12.74) is ∼ 10−5. The average time taken up by the example is ∼ 1.5 s when
operating on the aforementioned workstation and operating system. The efficiencies and polar-
ization angles obtained in this and two next Subsections for transmission and reflection gratings
working in conical diffraction can be compared with those obtained by the use of other rigorous
methods and codes [12.7, 12.8].

12.9.2 Efficiencies and polarization angles of dielectric sine grating

In Tables 12.3 and 12.4, the efficiency results of the IM for a typical dielectric sine grating
working in a conical mount are presented. The grating and light parameters are as follows:
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Table 12.4: Diffraction efficiencies (η±) and diffraction (θ±, ϕ±) and polarization (δ±, ψ±) angles of a dielectric
sine grating for Ez = 0a

DOb θ±,◦ ϕ±,◦ η±,% δ±,◦ ψ±,◦

R−3 −43.384 −15 1.121 70.99 3.60
R−2 −9.744 −15 3.741 26.90 0.93
R−1 20.389 −15 3.873 63.25 178.18
R0 60 −15 10.33 88.93 178.05
T−5 −57.013 −7.435 .01855 80.19 −114.68
T−4 −35.921 −7.435 .002482 52.58 100.24
T−3 −19.545 −7.435 .7394 57.61 −179.28
T−2 −4.729 −7.435 4.922 22.90 174.84
T−1 9.770 −7.435 9.923 60.39 4.72
T0 24.949 −7.435 7.145 77.32 6.84
T1 42.371 −7.435 51.83 84.43 −5.78
T2 67.826 −7.435 6.351 84.85 −11.39

a 2H/d = 0.3, ε+ = 1, ε− = 4, µ± = 1, λ/d = 0.5, θ = 60◦, ϕ = 15◦, δ = 8.499◦, ψ = 180◦.
bDiffraction order

2H/d = 0.3, ε+ = 1, ε− = 4, µ± = 1, λ/d = 0.5, θ = 60◦, ϕ = 15◦. For Table 12.3, the incident
polarization angles are δ = 81.501◦ and ψ = 0, for Table 12.4—δ = 8.499◦, ψ = 180◦.

We used 100 discretization points and the numerical differentiation of V+ to calculate
these examples which allocate 10 MByte of RAM. The energy balance error calculated from
(12.74) is about 10−5 for both components of the polarization incident radiation. The average
computation time taken up by an example on the aforementioned workstation and operating
system is ∼ 0.1 s.

12.9.3 Efficiencies and polarization angles of metallic echelette grating

The numerical results for a typical metallic echelette grating with blaze angle ζ and an apex
angle of 90◦ (see Fig. 12.2) working in a conical mount are demonstrated in Tables 12.5 and
12.6 for the two basic states of the incident polarization: δ = 0, ψ = 180◦ or δ = 90◦, ψ = 0.
The grating and light parameters are as follows: ζ = 30◦, ε+ = 1, ε− = (−45,28), µ± = 1,
λ/d = 0.5, θ = 0, ϕ = 40◦, and ψ = 0. One has used N = 800, mesh scaling near edges
and the differentiation of V+ to calculate these examples allocating 196 MByte of RAM. The
average energy balance error calculated from (12.74) is ∼ 10−5 for both polarization states of
the incident radiation. The average computation time taken up by two values of the polarization
angle on the aforementioned workstation and operating system is ∼ 3 s.

12.9.4 Anomalously absorbing Ag shallow-sine grating in the visible

Resonance and non-resonance anomalies differing in their nature can be effectively explored in
high conductive gratings, such as: surface plasmon excitations, Bragg and Brewster conditions,
groove shape features, etc. Because the s and p modes in conical diffraction are coupled through
the boundary conditions, the associated problems are more general, and gratings act as perfect
absorbers and local-field enhancers.
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Table 12.5: Diffraction efficiencies (η+) and diffraction (θ+, ϕ+) and polarization (δ+, ψ+) angles of a metallic
echelette grating for δ = 0, ψ = 180◦a

DOb θ+,◦ ϕ+,◦ η+,% δ+,◦ ψ+,◦

R−1 −40.746 −40 12.97 39.447 −175.93
R0 0 −40 28.49 86.414 −50.97
R1 40.746 −40 24.81 39.209 7.67

a ζ = 30◦, ε+ = 1, ε− = (−45,28), µ± = 1, λ/d = 0.5, θ = 0, ϕ = 40◦.
bDiffraction order

Table 12.6: Diffraction efficiencies (η+) and diffraction (θ+, ϕ+) and polarization (δ+, ψ+) angles of a metallic
echelette grating for δ = 90◦, ψ = 0a

DOb θ+,◦ ϕ+,◦ η+,% δ+,◦ ψ+,◦

R−1 −40.746 −40 53.15 54.0 13.37
R0 0 −40 17.48 4.58 95.21
R1 40.746 −40 9.444 49.41 −171.22

a ζ = 30◦, ε+ = 1, ε− = (−45,28), µ± = 1, λ/d = 0.5, θ = 0, ϕ = 40◦.
bDiffraction order

In Fig. 12.17, the absorption of the Ag sinusoidal grating with d = 2.2 µm and 2H =
100 nm is calculated for the δ = 90◦,ψ = 0 or δ = 0,ψ = 180◦ polarized incidence light
with λ = 663 nm as a function of θ for ϕ = 0 (classical, TE and TM) or ϕ = 50◦ (conical).
The refractive indices of Ag were taken from Ref. 12.36 (µ± = 1). For in-plane diffraction,
anomalous absorption exists only for the TM polarization, while for conical diffraction both
components are absorbed but in smaller amounts.

Note that we used the variant of discretization of H+V− to calculate these examples. The
calculated problem allocates 10 MByte of RAM using N = 100. The energy balance error cal-
culated from (12.74) is about 10−6 for both components of the polarization of incident radiation.
The average computation time taken up by the example on the aforementioned workstation and
operating system is less than 0.1 s per calculation point.

12.9.5 Photonic crystals with Au nanorods in the visible–near-IR

In this Subsection, we are going to analyze numerically the optical response (reflection and
absorbtion) of photonic crystal slabs supporting polariton-plasmon propagation with different
cross sections of nanowires invariant with respect to the z axis. The essential physics of the
formation of localized plasmon polariton modes in metallic nanowire arrays is described in
Chapter 1. The vital role of the absorption, slab cross-section shape, and filling ratio of pho-
tonic crystals in the visible and near infrared regions is demonstrated in this Subsection. The
model contains M − 2 (see Fig. 12.3) identical gratings with closed boundaries (inclusions) of
simple cross sections displaced vertically (by hm) and horizontally (by fm) relative to one an-
other and embedded in a homogeneous medium with dielectric permittivity ε1 and magnetic
susceptibility µ1. We deal here only with materials with µm = 1, m = 0, . . .M, although the
model is applicable to other cases as well, including metamaterials [12.18]. The dependence
of the dielectric permittivity εm, m = 2, . . .M − 1 of the material of nanorods on the incident
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Figure 12.17: Absorption of an Ag sinusoidal grating with d = 2.2µm and a depth of 100 nm working in classical
(ϕ = 0) or conical (ϕ = 50◦) diffraction, plotted vs. θ for λ = 663 nm and δ = 90◦,ψ = 0 or δ = 0,ψ = 180◦.

photon frequency is assumed to be known. The lower medium and the upper medium are like-
wise assigned pairs of material constants, but one may conceive of more complicated cases
of multilayer structures as well. The model also allows arbitrary incidence of, in the general
case, elliptically polarized radiation on photonic crystals, which is prescribed by two angles of
incidence and two angles of polarization.

Figure 12.18 displays for comparison theoretical spectra of energy reflected from, and
absorbed by, a photonic crystal with Au nanowires of circular, square, rectangular, and trian-
gular cross sections of the same area and with M = 3 studied in the 1−3-eV photon energy
range (visible and near infrared). In this and similar subsequent examples, we consider the
TM-polarized (θ = ϕ = δ = 0, ψ = 180◦) light normally falling on Au nanowires embedded
in a SiO2 matrix with d = 200 nm, ε0 = ε1 = ε3 = 2.13, and refractive indices of Au taken
from Ref. 12.36. The orientation of the rods having edges is chosen in such a way that light
normally falls on one side of the rods. The a× b dimensions of the rectangular rods selected
for this example are 50×25 nm2 or 25×50 nm2 and the width of the squares or triangles and
diameter of the circles were chosen to obtain equal cross sectional area S = 1250 nm2. As seen
from Fig. 12.18, reflection and, particularly, absorption spectra exhibit a strong difference near
the plasmon-polariton anomaly among the five shapes of the nanowire cross section chosen.
These differences amount to several hundred percent for the rectangles because of their differ-
ent width-to-height ratio (two and a half) compared with the square or the circle (one) and the
equilateral triangle (0.866). One observes also a noticeable difference in the positions of the
absorption and reflection maxima among different grating profiles. Thus, the simple effective
medium theory cannot be applied to design and analysis of such photonic crystals, even for a
small filling ratio [12.13].



12.66 Gratings: Theory and Numeric Applications, Second Edition, 2014

Figure 12.19 presents energy spectra similar to those displayed in Fig. 12.18 but for S
four times that of the preceding example. In this case, a×b = 100×50 nm2 or 50×100 nm2.
We readily see that the differences in the reflection and absorption spectra among gratings of
different profiles increase with increasing filling ratio and are observed now not only close to
the plasmon resonances. Near the resonances, they amount to a few dozen percent of energy.
The absorption spectra of the triangular-shaped nanowires have an interesting step-like function
behaviour, which is not the case for absorption spectra of nanowires of other rod shapes.

Only 50 discretization points, mesh grading, Hankel kernel functions for inclusions and
discretization of H+V− have been used to compute these examples which allocate ∼ 0.1 MByte
memory. The relative error calculated from the energy balance for absorption gratings is ∼
10−4. The average time taken up by one point on the aforementioned workstation and operating
system is less than 0.1 s.
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Figure 12.18: Calculated reflection (ref.) and absorption (abs.) spectra of SiO2-embedded gratings with d = 200
nm and a layer of different Au-nanowire cross sections of the same area of S = 1250 nm2, plotted vs. photon energy
for normal incidence and TM polarization.

12.9.6 Lossless photonic crystal with circular rods in the near- and mid-IR

In this example, we consider numerically some diffraction properties of non-absorbing photonic
crystals with dielectric rods. The influence of the geometry and number of crystal layers, the
shape of rods, the filling ratio, the index of refraction of materials and the polarization and
diffraction angles of light can be investigated for this type of photonic crystals. The role of
the filling ratio, refractive index and polarization was demonstrated for the classical diffraction
[12.12, 12.31]. Here we demonstrate, as an example of possibilities of developed software, the
vital role of the filling ratio and polarization for conical diffraction.

Figures 12.20 and 12.21 display spectral transmission for photonic crystal circular rods
with d = 1 µm and εm = εrod = 4, m = 2 . . .M−1, µm = 1, m = 0, . . .M embedded in vacuum
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Figure 12.19: The same as in Figure 12.18, but for S = 5000 nm2.

(ε0 = ε1 = εM = 1) at filling ratios of p = 0.125 and p = 0.5 for M = 17, hm = 0.866 µm, and
fm = 0.5 µm (hexagonal crystal geometry) for θ = 0 and δ = 90◦, ψ = 0 or δ = 0◦, ψ = 180◦

(see the detailed model description in the previous numerical example). In Fig. 12.20 one can
see in-plane diffraction efficiencies (ϕ = 0) and similar transmittance data were computed in
Ref. 12.31 by the boundary integral equation method of Ch. 4 (Figs. 6 and 11 of Ref. 12.31).
In Fig. 12.21 for the off-plane diffraction ϕ = 30◦ and this is an additional parameter compared
with the classical diffraction case.

For both in-plane and off-plane examples, there is a very different behavior in diffraction
properties for TE and TM polarization components of the incident radiation, especially for big
filling ratios. Compared with respective curves obtained in Figs. 12.20 and 12.21, it emerges
that for s-polarized light the centers of the conical diffraction gaps have shifted significantly
to smaller wavelengths and the widths and depths of the gaps have decreased considerably.
In contrast to this behavior, for p-polarized light the centers of the conical diffraction gaps
compared with the in-plane ones have shifted a little bit in opposite directions and the widths
and depths of these gaps have increased noticeably. The vital importance of the azimuthal
angle ϕ , as well as the incidence polarization has become evident even for a small filling ratio
(p = 0.125); however they are more important for a high filling ratio (p = 0.5). Thus, using
the conical diffraction for dielectric photonic crystals gives additional control parameters which
significantly affect Bragg diffraction and existing photonic band gaps.

Only N = 50 without mesh grading and with Hankel kernel functions for inclusions are
required to compute these examples using discretization of H+V− which allocates ∼ 0.2 MB
memory. The relative error calculated from the energy balance for non-absorption gratings
is ∼ 10−4. The average time taken up by one point on the aforementioned workstation and
operating system is less than ∼ 0.1 s.
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Figure 12.20: Calculated transmission spectra of 1 µm-period gratings with 15 layers of dielectric circular rods
with ε = 4 and different filling ratios p embedded in vacuum with hexagonal structure, plotted vs. λ for θ = 0,
ϕ = 0 and different polarization angles (classical diffraction).

12.9.7 Al echelle grating coated by MgF2 in the VUV

Echelle gratings or simple echelles working in high spectral orders near Littrow diffraction
conditions at high angles θ are one of the most popular grating types; however, they are rather
difficult for fabrication and efficiency computations, especially those with dielectric coatings. A
thin oxide film on the Al grating surface may lead to degradation of its diffraction properties at
wavelengths below 130–140 nm. To protect and even improve the echelles’ reflectance surfaces,
a thin dielectric coating with a thicknesses of a few dozen nm can be applied in the VUV
range. The usual material is MgF2, but sometimes other dielectrics are used. At a certain
thickness of the coating film, waveguide phenomena come out to affect the grating performance;
as a result, the diffraction efficiency can either decrease or increase as compared to the non-
oxidized bare grating. A non-conformal layer which is obtained by two adjacent non-parallel
boundaries (having different vertical distances between) provides a new freedom in design, but
the analysis of gratings becomes more complex. Furthermore, echelles are frequently used in
conical diffraction, making it possible to separate beams in a non-dispersive plane [12.3].

Our example deals with an aluminium echelle with 316 grooves/mm, working blaze an-
gle ζ1 = 63.4◦ (r-2, i.e. tanζ1 = 2), and apex angle 90◦. The grating works at the −47th
order, wavelength λ = 120 nm and ϕ = 6.5◦. A protecting MgF2 layer is applied. Other
coating and light parameters are as follows: ε0 = 1, ε1 = εMgF2 = (2.643876,0), ε2 = εAl =
(−1.2353087,0.0913816), µm = 1, m = 0, . . .2, δ = 0, and ψ = 180◦. We consider four vari-
ants of its thickness and shape including zero thickness for the bare Al grating. For coated
gratings, the coating’s upper boundary is sawtooth, with right angle at the top vertex situated
h0 = 30 nm above the grating’s top vertex. Thus, the variants differ from each other by the
coating’s working angle, which is ζ0 = ζ = 0 for the bare case, ζ = 63.4◦—for the conformal
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Figure 12.21: The same as in Figure 12.20, but for ϕ = 30◦ (conical diffraction).

case and ζ = 62.9◦ or ζ = 63.9◦—for two non-conformal cases. Such non-conformal models
of coatings do not pretend to be the best description of real structures formed by sputtering,
but are simple and possible; and they account for a deviation of coating direction from the Al
substrate surface which leads to a tapered shape on both slopes of the triangular profile.

Fig. 12.22 presents angular dependencies of the grating efficiency. The efficiency results
for such echelles obtained using different IM-based codes in in-plane mounts are presented in
Ref. 12.25. Fig. 12.22 shows that the conformal coating leads to a noticeable increment of
efficiency in comparison with a bare case over the whole range of angles, by ∼ 20%. The
non-conformal coating with ζ = 62.9◦ increases the efficiencies by ∼ 10% compared to the
bare grating. The geometry in this case is such that the working facet receives a thinner layer
of MgF2, which narrows approaching the vertex; the non-working facet gets a fatty coating.
In contrast, the non-conformal coating with working angle ζ = 63.9◦ does not increase the
efficiency at its maximum and leads to practically the same efficiency graph as for the bare Al
grating case in the whole central angular range. The opposite impact of these non-conformal
coatings working in classical diffraction is demonstrated in Ref. 12.25. Thus, the efficiency is
very sensitive to the boundary vertical shift, to the deviation of a MgF2 layer from conformal
shape, and also to the off-plane deviation.

Computations in this example were carried out with N = 800 for the bare grating and
with N = 1600 for the gratings with conformal and non-conformal coatings. One also has used
mesh scaling near edges and the differentiation of V+ to calculate these examples, allocating
1024 MByte of RAM for N = 1600. The relative error calculated by (12.128) from the energy
balance for absorption gratings is ∼ 10−4. In case of piecewise linear profiles, many pairs
of kernel function arguments can be obtained from each other by translations; corresponding
kernel function values are equal. Hence, there is an effective way to check for given arguments,
whether or not we already encountered a congruent pair and calculated the kernel function for
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Figure 12.22: Efficiency in −47 order of A1 316 grooves/mm echelles with blaze angle ζ1 = 63.4◦ working
in conical diffraction at λ = 120 nm and ϕ = 8◦: bare (ζ = 0), or with MgF2 coating having upper sawtooth
boundary with vertical displacement h0 = 30 nm and working angle ζ = 63.4◦ (conformal case), or ζ = 62.9◦
(non-conformal case), or ζ = 63.9◦ (non-conformal case), plotted vs. θ .

it (see Sec. 12.6.2). This approach significantly reduces computational time for echelles and
even more—in case of conformal layers, where the kernel function values calculated on the
upper side of the layer can be reused on the lower side. Calculation for each point on Fig. 12.22
required between a few s (bare case) and several dozen s (conformal and non-conformal cases)
on the aforementioned workstation and operating system.

12.9.8 Au off-plane-grazing-incidence blaze grating in soft x-rays

The conical diffraction mount in which the direction of incident light is confined to a plane
parallel to the direction of the grooves has the unique property of maintaining high and sus-
tained diffraction efficiency, which is very important in the x-ray–EUV range. Such gratings
are utilized as dispersive elements in laboratory and space spectral instruments, time-delayed
compensators or splitters and spectral purity filters for EUV lithography. Grazing-incidence
off-plane gratings have been suggested for the International X-ray Observatory (IXO) [12.53].
Compared with gratings in the classical in-plane mount, x-ray gratings in the off-plane mount
have the potential for superior resolution and efficiency for the IXO mission. The results of
efficiency calculations for such a gold blazed soft x-ray grating in a conical mount using the
perfect triangular groove profile with d = 200 nm are shown in Fig. 12.23. The design blaze
angle ζ is 7.5◦ and the technique anti-blaze angle is 64.53◦ [12.54]. Remaining grating and
light parameters are as follows: µ± = 1, θ = 0, ϕ = 88◦, and δ = 90◦ and ψ = 0 or δ = 0 and
ψ = 180◦.

In Fig. 12.23, the numerical results of the IM presented for a finite boundary conductivity
are compared with those based on the IM with the perfect boundary conductivity multiplied
by Fresnel reflectances calculated with respect to the blaze facet. The incident beam in the
computations based on the perfect conductivity model and classical diffraction (using the In-
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variance theorem (see in [12.37] and Ch. 4) was assumed to be 100% TE-polarized (Bz = 0).
The refractive indices of Au were derived from the compilation at [12.55].

Rigorous computations carried out by the methods presented show that for the finite grat-
ing model all the order efficiencies are not sensitive to a polarization state. For both basic
polarization state of the incident radiation order efficiencies presented in Fig. 12.23 differ not
more than a few tenths of a %. Contrary, calculations based on the perfectly conducting bound-
ary model are very sensitive to the polarization state and sharp Rayleigh anomalies for the
TM-polarized incident radiation (not shown) occur. As can be seen in Fig. 12.23, the agree-
ment between the data obtained by the finite conductivity model and the perfect conductivity
model is good when the TE-polarization is used for the perfect conductivity model. The same
conclusions were derived for a similar grating problem in Ref. 12.7 using the real (measured)
average groove profile for the efficiency computation.

We have used 800 discretization points, the numerical differentiation of V+ and no mesh
scaling to calculate the finite-conducting blaze-groove-profile example that allocates a space of
144 MByte. The energy balance error calculated from (12.74) is ∼ 10−4 in the investigated
wavelength range. The average computation time taken up by one wavelength on the aforemen-
tioned workstation and operating system is ∼ 2 s. The time of a computation using the perfect
conductivity model for N = 200 is about eighty times shorter at the same computation accuracy.
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Figure 12.23: Diffraction efficiencies of an Au triangular-groove-profile grating with d = 200 nm, ζ = 7.5◦, µ± = 1
and for the incident wave with θ = 0, ϕ = 88◦ and δ = 90◦, ψ = 0 or δ = 0, ψ = 180◦ , plotted vs. λ .

12.9.9 W/B4C multilayer off-plane-grazing-incidence blaze grating in soft-x-rays

Multilayer coated blazed gratings with high groove density are the best candidates for use in
high resolution EUV and soft x-ray spectrometry such as resonance inelastic x-ray spectroscopy.
Theoretical and experimental analysis show that such a grating can be potentially optimized for
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high dispersion and spectral resolution in a desired high number diffraction order without sig-
nificant loss of diffraction efficiency. In order to realize this potential, the grating should have a
perfect triangular groove profile and its absorption should be minimized. The grazing-incidence
conical-diffraction mounting in which the direction of incident light is confined to a plane par-
allel to the direction of the grooves has the unique property of maintaining a maximal level of
diffraction efficiency due to an additional angular parameter. In this Subsection, we analyze the
optical absorption of a blazed multilayer grating working in grazing conical diffraction in the
soft x-ray range.

In Fig. 12.24, the absorption of the 10000 /mm blazed Si grating coated with 60 bi-layers
of W/B4C is calculated for the polarized (δ = 90◦, ψ = 0) incidence radiation with λ = 1.3 nm
and θ = 6◦ as a function of the azimuthal angle ϕ . The grating has a triangular groove profile
with the blaze angle of 6◦ and antiblaze angle of 64.53◦ and a conformal multilayer coating
(see Sec. 12.9.7) with the thicknesses of W and B4C layers measured in respect to the working
facet normal, 0.6006 nm and 2.4024 nm , respectively. The refractive indices of Si, W, and B4C
were taken from [12.55]. Figure 12.24 displays for comparison theoretical absorption spectra
of a Si mirror coated with the same multilayer and working in the same mount. As one can
see in Fig. 12.24, for the defined polar angle the grating and mirror absorptions are close in the
azimuthal angle range investigated. Grating absorption minima less than 70% can be obtained
for the azimuthal angle of ∼ 77.2◦. Thus, almost the all reflected energy can be directed into
diffraction orders without additional losses for the multilayer soft-x-ray grating absorption.

Only N = 400 was used to compute this grating example accounting 121 boundaries
which allocates ∼ 60 MB of RAM. The relative error calculated from the energy balance us-
ing Eq. (12.128) is ∼ 10−4. The average time taken up by one point on the aforementioned
workstation and operating system is ∼ 4 min.
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Figure 12.24: Absorption of structures with 60 W/B4C bilayers on Si for the polarized (δ = 90◦, ψ = 0) grazing
incidence x-ray radiation with λ = 1.3 nm and θ = 6◦ vs. ϕ .
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12.9.10 Flight Mo/Si multilayer rough lamellar grating in the EUV

Here we present examples of the Mo/Si lamellar grating efficiency standardized for the Extreme-
Ultraviolet Imaging Spectrometer (EIS) on the Hinode (former Solar-B) mission [12.56], the
first implementation of a multilayer grating on a satellite instrument. We describe the per-
formance of the flight FL1 4200 grooves/mm multilayer grating operating at θ = 6.5◦ of the
in-plane configuration in the wavelength region 17–21 nm. The efficiency was calculated by
PCGrate-SX v.6.5 software using data of AFM measurements and was compared to the syn-
chrotron efficiency measurements [12.1].
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Figure 12.25: Calculated TM efficiencies of orders of a 4200 grooves/mm rough trapezoidal grating with 20 Mo/Si
bilayers on Si operating at θ = 6.5◦ vs. λ .

The depth of all the boundary profiles of the multilayer grating was 6.0 nm, with side
slopes of 35◦ and equal top and groove widths, as derived from the AFM and efficiency mea-
surements. Because polarization effects are small near normal incidence, the efficiencies are
presented for the case of TM-polarized radiation (ϕ = δ = 0, ψ = 180◦). To determine the
absolute values of order efficiencies, a model of the two-period-randomized-trapezium grating
describing the realistic boundary shape and roughness was applied. For a rigorous accounting
of the random roughness impact on the efficiency, the model with 41 randomly rough borders
of the period of ∼ 476.19 nm having 400 random sampling points on two trapezoidal grooves
with the same Gaussian surface roughness height statistics and Gaussian autocorrelation func-
tion was applied (for random border generation on non-flat surface shapes, see [12.1]) . The
rough boundary parameters are as follows: the Si-Mo interface rms roughness σSi−Mo = 0.2 nm
and the Mo-Si rms roughness σMo−Si = 0.85 nm. The lateral correlation length ξ = 5 nm was
chosen from the detailed microscopic analysis and the growth model of typical Mo/Si layers
obtained by using magnetron sputtering [12.47]. An assumption about the absence of a verti-
cal correlation between the border random roughness components was applied in this model.
Seven sets of 41 rough border profiles were generated to compute exact efficiencies of the FL1
multilayer grating. The Si protective capping layer of 2 nm was modeled by using 1.5-nm-thick
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Figure 12.26: Calculated TM scattering intensities of a 4200 grooves/mm rough trapezoidal grating with 20 Mo/Si
bilayers on Si operating at θ = 6.5◦ vs. λ .

amorphous SiO2 on 1.5-nm Si in order to account for the oxidation of the Si capping layer. The
FL1 multilayer parameters extracted from the mirror investigation are as follows: 20 Mo/Si
layer pairs with the bilayer period D = 10.3 nm, Mo thickness to D ratio Γ = 0.37.

To determine the absolute values of scattering light intensities between orders [12.5], a
model of ten-period-randomized-trapezium grating allowing a fine-diffraction-angle discretiza-
tion and describing the realistic boundary shape and roughness was applied. For a rigorous
accounting of random roughnesses, the model with 41 randomly rough low-frequency borders
of the period of ∼ 2381 nm having 800 random sampling points on 10 trapezoidal grooves with
the described above rough boundary parameters was used. Some 105 sets of 41 non-correlated
vertically border profiles were generated to compute exact scattering light intensities between
orders of the FL1 multilayer grating. The same layer parameters as for the efficiency model
(see above) were used. Refractive indices derived from the NIST data for Mo [12.57], from
the CXRO data—for Si [12.53], and from the Palik data—for SiO2 were used for efficiency
calculations in the whole wavelength range.

Convergence and accuracy of the efficiency results of the randomly-rough 41-boundary
grating were investigated using the Penetrating solver, Gauss computation algorithm and finite
type of low border conductivity. All the accelerating convergence options were switched on
in PCGrate-SX v. 6.5 (see Sec. 12.4.3). The linear type of refractive index data interpolation
was chosen. A high rate of convergence of the results was observed for the developed grating
efficiency model [12.1]. Only several sets of 41 rough border profiles and the medium number
of discretization points per boundary are enough to compute exact efficiencies in all orders of
interest. The differences between principal order efficiencies obtained with seven boundary sets
with low (N = 600), medium (N = 800), and high (N = 1000) accuracy are about a few percents
for all orders under study. The differences between efficiencies obtained with three, five, and
seven statistical boundary sets (N = 800) are also about a few percent for all diffraction orders
under study. For the final efficiency modeling (Fig. 12.25), N = 800 and seven random boundary
sets are used. The total error for all points and ranges derived from the energy balance (12.128)
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was on the order of 10−3. The time taken up by one rigorous computation (one scanning point)
for N = 800 on the aforementioned workstation and operating system is ∼ 45 min.

Convergence and accuracy of the scattering intensity results of a randomly-rough 41-
boundary grating were investigated using similar accuracy parameters to the efficiency compu-
tation. A medium rate of convergence of the light intensity results was observed for a wave-
length of 19.25 nm and the above computation model. More than 100 sets of 41 rough border
profiles and medium number of discretization points are enough to compute exact values of
scattering light intensities between orders. The difference between scattered light intensities
data obtained with seven boundary sets using medium (N = 1000) and high (N = 1200) ac-
curacy is about 10−5 for almost all diffraction angles. The differences between scattered light
intensities obtained with different numbers of statistical boundary sets (35, 70, 98, 105) and
N = 1000 for all diffraction (scattering) angles are shown in Ref. 12.1. For the final scattering
intensity modeling (Fig. 12.26), N = 1000 and 105 random boundary sets were chosen. The
total error for all points and ranges derived from the energy balance was on the order of 10−5.
The time taken up by one computation for N = 1000 on the aforementioned workstation and
operating system is about two hours.

12.10 Appendix A: Derivation of the recursive algorithm for Separating solver

In any of the strips {u j < y < d j−1} the functions ε and µ take constant values and we introduce
its wave number κ j by

κ2
j = εµ − ε0µ0 sin2 ϕ .

As quasi-periodic solutions of the Helmholtz equation

(∆+ω2κ2
j )u = 0

in the strips {u j < y < d j−1} between Σ j and Σ j−1, j = 1, . . . ,M − 1, the functions Ez,Bz are
smooth and bounded. Hence, for y ∈ (u j,d j−1)

(Ez,Bz) = ∑
n∈Z

(
(a j

n,c
j
n)e−iβ ( j)

n y+(b j
n,d

j
n)eiβ ( j)

n y
)

eiαnx .

Assign to each profile Σ j a characteristic y-coordinate y j, for example y j = Y j(0) for a
given parametrization (X j(t),Y j(t)) of the profile Σ j. Recall that y0 > y1 > .. . > yM−1. Using
the notation

(A j
n,C

j
n) = e−iβ ( j)

n y j(a j
n,c

j
n) , (B j

n,D
j
n) = eiβ ( j)

n y j(b j
n,d

j
n) ,

(A j
n ,C

j
n ) = e−iβ ( j+1)

n y j(a j+1
n ,c j+1

n ) , (B j
n,D

j
n) = eiβ ( j+1)

n y j(b j+1
n ,d j+1

n ) ,
(12.141)

the field in {u j < y < d j−1} above Σ j is given by

(Ez,Bz) = ∑
n∈Z

(
(A j

n,C
j
n)e−iβ ( j)

n (y−y j)+(B j
n,D

j
n)eiβ ( j)

n (y−y j)]
)

eiαnx, (12.142)

whereas in {u j+1 < y < d j} below Σ j

(Ez,Bz) = ∑
n∈Z

(
(A j

n ,C
j

n )e−iβ ( j+1)
n (y−y j)+(B j

n,D
j

n)eiβ ( j+1)
n (y−y j)

)
eiαnx . (12.143)
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The terms (A j
n,C

j
n)eiαnx−iβ ( j)

n (y−y j) and (B j
n,D

j
n)eiαnx−iβ ( j+1)

n (y−y j) correspond to incident waves

on the profile Σ j, whereas (B j
n,D

j
n)eiαnx+iβ ( j)

n (y−y j) and (A j
n ,C

j
n )eiαnx+iβ ( j+1)

n (y−y j) represent the
diffracted waves. Thus, the coefficients in equations (12.142) and (12.143) are linked by the
reflection and transmission matrices of the grating having only the interface Σ j.

For a compact notation, we introduce the infinite coefficient vectors

A j = (. . . ,A j
−1,A

j
0,A

j
1, . . . ,C

j
−1,C

j
0,C

j
1, . . .)

T , A j = (. . . ,A j
−1,A

j
0 ,A

j
1 , . . . ,C

j
−1,C

j
0 ,C

j
1 , . . .)

T .

BBB j = (. . . ,B j
−1,B

j
0,B

j
1, . . . ,D

j
−1,D

j
0,D

j
1, . . .)

T , B j = (. . . ,B j
−1,B

j
0,B

j
1, . . . ,D

j
−1,D

j
0 ,D

j
1 , . . .)

T .

Then equations (12.141) can be written in the form

A j−1 = γγγ−1
j AAA j , B j−1 = γγγ jBBB j , (12.144)

with the infinite diagonal matrix

γγγ j = diag(. . . ,eiβ ( j)
−1 h j ,eiβ ( j)

0 h j ,eiβ ( j)
1 h j , . . . ,eiβ ( j)

−1 h j ,eiβ ( j)
0 h j ,eiβ ( j)

1 h j , . . .),

with h j = y j−1 − y j > 0.
Denoting by r j, t j the (infinite) reflection and transmission matrices of the grating with

profile Σ j for illumination from above and by r′j, t′j the corresponding matrices for illumination
of Σ j from below. This means that the incoming field with coefficient vector A j is diffracted
by the simple grating with profile Σ j into the reflected field with coefficient vector r jA j and the
transmitted field with coefficient vector t jA j. Analogously, illumination from below by a field
with coefficient vector B j results in a reflected field characterized by r′jB j and a transmitted
field with coefficient vector t′jB j. Hence, for any j = 1, . . . ,M − 2 the coefficient vectors are
linked by the relations

BBB j = r jAAA j + t′jB j , A j = t jAAA j + r′jB j . (12.145)

Writing (12.11) in the form

(Ez,Bz) = (A0
0,C

0
0)eiαx−iβ (y−y0)+ ∑

n∈Z
(B0

n,D
0
n)eiαnx+iβ (0)

n (y−y0) .

we obtain (12.145) with j = 0, whereas for y <−H we derive from

(Ez,Bz) = ∑
n∈Z

(A M−1
n ,C M−1

n )e−iβ (M)
n (y−yM) eiαnx

the relation
BBBM−1 = rM−1AAAM−1 , AM−1 = tM−1AAAM−1 . (12.146)

Here we provide the formulas for solving the multi-profile problem to determine the vec-
tors BBB0 and AM−1 from given input AAA0 and vanishing BM−1. The idea is to look for a recursion
for the operators R j,T j such that

BBB j = R jAAA j , AM−1 = T jAAA j , j = M−1, . . . ,0.

By (12.146) we know that RM−1 = rM−1 , TM−1 = tM−1. Furthermore, we have from (12.144)
and (12.145)

B j−1 = r j−1A j−1 + t′j−1γγγ jB j , γγγ−1
j A j = t j−1A j−1 + r′j−1γγγ jB j ,
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which gives

B j−1 = r j−1A j−1 + t′j−1γγγ jR jA j , (12.147)

γγγ−1
j A j = t j−1A j−1 + r′j−1γγγ jR jA j . (12.148)

The last equation implies

A j =
(
γγγ−1

j − r′j−1γγγ jR j
)−1t j−1A j−1 ,

which transforms (12.147) into

B j−1 =
(

r j−1 + t′j−1γγγ jR j
(
γγγ−1

j − r′j−1γγγ jR j
)−1t j−1

)
A j−1 ,

and hence

R j−1 = r j−1 + t′j−1γγγ jR j
(
γγγ−1

j − r′j−1γγγ jR j
)−1t j−1 . (12.149)

Finally, from

AN−1 = T j
(
γγγ−1

j − r′j−1γγγ jR j
)−1t j−1A j−1

we derive

T j−1 = T j
(
γγγ−1

j − r′j−1γγγ jR j
)−1t j−1 , (12.150)

This leads to the following marching procedure:

Set RM−1 = rM−1 , TM−1 = tM−1 ;

Compute for j = M−1, . . . ,1 R j−1 = r j−1 + t′j−1γγγ jR j
(
I− γγγ jr′j−1γγγ jR j

)−1γγγ jt j−1 ;

T j−1 = T j
(
I− γγγ jr′j−1γγγ jR j

)−1γγγ jt j−1 ;

Determine finally BBB0 = R0AAA0 , AM−1 = T0AAA0.

12.11 Appendix B: Derivation of the recursive algorithm for Penetrating solver

The scheme is based on the ansatz(
u j+1|Γ j

v j+1|Γ j

)
= A j

(
φ j

ψ j

)
,

(
∂nu j+1|Γ j

∂nv j+1|Γ j

)
= B j

(
φ j

ψ j

)
j = 0, . . . ,M−1 , (12.151)

with certain 2×2 linear operator matrices A j and B j. Note first that the initial values (12.124)
follow from (12.120) and the jump relation (12.26) for ∂nSΓM−1,M.

Using (12.151) the transmission conditions (12.116) on Γ j for j = 1, . . . ,M − 1 can be
written in the form(

u j|Γ j

v j|Γ j

)
= A j

(
φ j

ψ j

)
, (12.152)(

∂nu j|Γ j

∂nv j|Γ j

)
=

(
a j 0
0 b j

)
B j

(
φ j

ψ j

)
+

(
0 −c j ∂t

d j ∂t 0

)
A j

(
φ j

ψ j

)
. (12.153)



12.78 Gratings: Theory and Numeric Applications, Second Edition, 2014

The representation (12.119) and the jump relation (12.26) of the double layer potential DΓ j, j
imply that

u j|Γ j =
1
2
(
V ( j)

j j ∂nu j − (K( j)
j j − I)u j

)
+V ( j)

j j−1φ j−1 ,

v j|Γ j =
1
2
(
V ( j)

j j ∂nv j − (K( j)
j j − I)v j

)
+V ( j)

j j−1ψ j−1 .

Hence (12.153) leads, in matrix notation, to the equation(
a jV

( j)
j j 0

0 b jV
( j)
j j

)
B j

(
φ j

ψ j

)
−

(
I +K( j)

j j c jV
( j)
j j ∂t

−d jV
( j)
j j ∂t I +K( j)

j j

)
A j

(
φ j

ψ j

)
=−2

(V ( j)
j j−1φ j−1

V ( j)
j j−1ψ j−1

)
,

(12.154)

which is equivalent to (12.116). Using the singular integral H( j)
j j = −V ( j)

j j ∂t (see (12.31)) we
obtain the relation((

I +K( j)
j j −c jH

( j)
j j

d jH
( j)
j j I +K( j)

j j

)
A j −

(
a jV

( j)
j j 0

0 b jV
( j)
j j

)
B j

)(
φ j

ψ j

)
= 2

(
V ( j)

j j−1 0

0 V ( j)
j j−1

)(
φ j−1

ψ j−1

)
,

which is satisfied by (
φ j

ψ j

)
= Q j−1

(
φ j−1

ψ j−1

)
,

provided that Q j−1 is a solution of the operator equation (12.123).
The equations (12.125) and (12.126) for A j−1 and B j−1 are derived from relations on the

upper boundary Γ j−1 of G j. The representation (12.119) and condition (12.153) give(
u j|Γ j−1

v j|Γ j−1

)
=

1
2

((
V ( j)

j−1 j 0

0 V ( j)
j−1 j

)(
∂nu j|Γ j

∂nv j|Γ j

)
−

(
K( j)

j−1 j 0

0 K( j)
j−1 j

)(
u j|Γ j

v j|Γ j

))
+

(V ( j)
j−1 j−1φ j−1

V ( j)
j−1 j−1ψ j−1

)

=
1
2

((
a jV

( j)
j−1 j 0

0 b jV
( j)
j−1 j

)
B j −

(
K( j)

j−1 j c jV
( j)
j−1 j∂t

−d jV
( j)
j−1 j∂t K( j)

j−1 j

)
A j

)(
φ j

ψ j

)

+

(
V ( j)

j−1 j−1 0

0 V ( j)
j−1 j−1

)(
φ j−1

ψ j−1

)
,

which by (12.151), (12.121) and using H( j)
j−1 j =−V ( j)

j−1 j∂t leads to (12.125).
Now (12.126) follows from (12.23) and (12.119), since

V ( j)
j−1 j−1φ j−1 =−1

2
(
V ( j)

j−1 j−1∂nu j − (I +K( j)
j−1 j−1)u j

)
,

V ( j)
j−1 j−1ψ j−1 =−1

2
(
V ( j)

j−1 j−1∂nv j − (I +K( j)
j−1 j−1)v j

)
,

imply that on Γ j−1(
∂nu j

∂nv j

)
=

(
(V ( j)

j−1 j−1)
−1(I +K( j)

j−1 j−1) 0

0 (V ( j)
j−1 j−1)

−1(I +K( j)
j−1 j−1)

)
A j−1

(
φ j−1

ψ j−1

)
−2
(

φ j−1

ψ j−1

)
.
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Equation (12.127) follows from the relations

V (0)
00 ∂nE i

z − (I +K(0)
00 )E i

z =−2E i
z , V (0)

00 ∂nBi
z − (I +K(0)

00 )Bi
z =−2Bi

z

on the upper profile Γ0, which hold because E i
z,B

i
z satisfy the Helmholtz equation (∆+ω2κ2

0 )u=
0 and the outgoing wave condition in G−

0 = R2 \ G0. Hence, the transmission conditions
(12.115) are fulfilled if and only if(

I +K(0)
00 −c0H(0)

00

d0H(0)
00 I +K(0)

00

)(
u1

v1

)
−

(
a0V (0)

00 0
0 b0V (0)

00

)(
∂nu1

∂nv1

)
=−2

(
ui

vi

)
,

i.e., if φ0,ψ0 satisfy (12.127).

Remark 12.11.1 If the material in the bottom layer GM is a perfect conductor, then the z-
components of E and B have to satisfy the boundary condition

Ez = uM = 0 , ∂nBz = ∂nvM = 0 on ΓM−1 . (12.155)

In this case, it is easy to see that the relations (12.125) and (12.126) for j = M − 1 with the
coefficients aM−1 = 1, bM−1 = cM−1 = dM−1 = 0, and the initial values

AM−1 =

(
0 0
0 I

)
and BM−1 =

(
I 0
0 0

)
lead to AM−2 and BM−2 satisfying(

uM−1|ΓM−2

vM−1|ΓM−2

)
= AM−2

(
φM−2

ψM−2

)
,

(
∂nuM−1|ΓM−2

∂nvM−1|ΓM−2

)
= BM−2

(
φM−2

ψM−2

)
.

Hence, the densities {φ j,ψ j}, j = 0, . . . ,M − 2, are derived by the same scheme (12.121 -
12.127).

12.12 Appendix C: Derivation of the absorption energy for multilayer gratings

As in Section 12.3.3 the application of Helmholtz equations and Green’s formula in ΩH ∩G0
implies the relation

ε0

εv
|pz|2 +

µ0

µv
|qz|2 = ∑

β 0
n ≥0

β 0
n

β

(ε0

εv
|E0

n |2 +
µ0

µv
|B0

n|2
)
+

ε0

εvβ
Im
∫

Γ0

∂nEz Ez +
µ0

µvβ
Im
∫

Γ0

∂nBz Bz .

where (Ez, Bz) is the solution of the conical diffraction problem, and ∂nEz = ∂+
n Ez, ∂nBz = ∂+

n Bz
are the normal derivatives on Γ0 of the z-components of the total fields in G0, i.e. the sum of
the reflected and the incident fields. Setting the energy of the incident wave

ε0

εv
|pz|2 +

µ0

µv
|qz|2 = 1 ,

the sum of reflection order efficiencies R (cf. (12.67)) fulfils

R+
ε0

εvβ
Im
∫

Γ0

∂nEz Ez +
µ0

µvβ
Im
∫

Γ0

∂nBz Bz = 1 .
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Hence, for non-transparent grating we derive the energy conservation

R+A = 1

with the absorption A

A =
ε0

εvβ
Im
∫

Γ0

∂nEz Ez +
µ0

µvβ
Im
∫

Γ0

∂nBz Bz . (12.156)

If, otherwise, the material parameters εM and µM are real, then some part of the inci-
dent field will be transmitted. Then similar considerations in the domain ΩH ∩GM lead to the
relations

T −
εMκ2

0

εvβκ2
M

Im
∫

ΓM−1

∂nEz Ez −
µMκ2

0

µvβκ2
M

Im
∫

ΓM−1

∂nBz Bz = 0 ,

where T is the sum of transmission order efficiencies of the multilayer grating (cf. (12.68)),
and ∂nEz = ∂−

n Ez, ∂nBz = ∂−
n Bz are the normal derivatives on ΓM−1 of the z-components of the

transmitted fields in GM. In this case we derive the energy conservation

R+T +A = 1 ,

where the absorption A is given by the formula

A =
1
β

Im
∫

Γ0

(ε0

εv
∂nEz Ez +

µ0

µvβ
∂nBz Bz

)
−

κ2
0

βκ2
M

Im
∫

ΓM−1

(εM

εv
∂nEz Ez +

µM

µv
∂nBz Bz

)
.

(12.157)

Using the jump conditions the obtained formulas for A can be easily transformed. For
example, from (12.115) we know that on Γ0

ε1 ∂−
n Ez

εvκ2
1

− ε0∂+
n Ez

εvκ2
0

=

√
ε0µ0

εvµv
sinϕ

( 1
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− 1
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1

)
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n Bz

µvκ2
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n Bz

µvκ2
0

=−
√

ε0µ0

εvµv
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( 1
κ2

0
− 1

κ2
1

)
∂tEz ,

Hence
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n Ez Ez +
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n Bz Bz
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Further, on ΓM−1
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such that
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12.13 Appendix D: Derivation of the general connection rule between 2D and 1D grat-
ings

We seek for a perturbative development of the reflection operator R in powers of the heights
h(i)x and h( j)

z of a bi-periodic surface either conductive or dielectric that is the sum of the two
Fourier series:

h(x,z) = hx +hz = ∑
i

h(i)x sin(2πxi/dx + τ(i)x )

+∑
j

h( j)
z sin(2πz j/dz + τ( j)

z )
(12.158)

Such a representation of h(x,z) is typical for real 2D periodic or random surfaces obtained,
e.g., as a linear response of a photoresist to light with two separate exposures in perpendicular
planes or by polishing using a linear tool. Note that the 2D Fourier transformation of h(x,z)
is also the sum of two 1D Fourier transforms of hx and hz. We suppose also that the bigrating
works under arbitrary incidence and polarization states of a plane monochromatic wave and the
respective single-periodic gratings work in conical diffraction. Suppose for simplicity hx and hz
are even functions, which is true for many ergodic stationary processes. So, replacing hx or hz
by −hx or −hz does not change the diffraction pattern in the far-field zone. We will study the
perturbative expansion of the reflected efficiency η as a function of the surface heights (h(i)x )2

and (h( j)
z )2. Using the perturbative expansion of R, the terms of η which contain an expression

such as (h(i)x )2k, (h( j)
z )2l will be denoted Rkl:

η = R00 +R01 +R10 +R11 +R02 +R20 + ...

Using the quasi-periodicity property of R and Taylor expansion of scattered field ampli-
tudes in powers of the surface profile heights (e.g, see Eq. 53 of Ref. 12.50), ηmn, ηm, and ηn
can be expressed in the following forms:

ηmn −o(h6) = δmna00 +∑
i

a(i)10(h
(i)
x )2 +a(i)20(h

(i)
x )4

+∑
j

a( j)
01 (h

( j)
z )2 +a( j)

02 (h
( j)
z )4 +∑

i, j
a(i, j)11 (h(i)x h( j)

z )2,
(12.159)

ηm −o(h6
x) = δm0a00 +∑

i
a(i)10(h

(i)
x )2 +a(i)20(h

(i)
x )4, (12.160)

ηn −o(h6
z ) = δ0na00 +∑

j
a( j)

01 (h
( j)
z )2 +a( j)

02 (h
( j)
z )4, (12.161)

where δm,n is the Kronecker delta.
From (12.159)–(12.161) we choose from the physical point of view one of the two possi-

ble expressions for ηmn through ηm and ηn:

ηmn −o(h6) =
ηmηn

a00
+∑

i, j
(a(i, j)11 −

a(i)m0a( j)
0n

a00
)(h(i)x h( j)

z )2 (12.162)
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Finally, using (12.162) one can formulate the equivalence rule:

ηmn =
ηmηn

rF
+o(h4),m∨n = 0,hx,z/dx,z < 1, (12.163)

where ηm and ηn are 1D grating efficiencies obtained in conical diffraction, rF—the Fresnel
factor of a 2D surface. It is worth noting that ηm and ηn in this equivalence rule should be
computed with preservation of incidence and polarization angles of both gratings in the absolute
coordinate system.
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